Álgebra asociativa

En matemáticas, un álgebra asociativa es un módulo que también permite la multiplicación de vectores de manera distributiva y asociativa.

Definición general editar

Sean   y   dos anillos unitarios, y   un homomorfismo entre anillos unitarios (es decir, un homomorfismo de anillos de manera que  ). Definimos la operación externa:

 

Esta operación   dota al grupo abeliano   de estructura de  -módulo por la izquierda. Esta operación es, además, compatible con el producto   del anillo   en el siguiente sentido: dados  , se tiene que  .

Caso especial en el que el anillo es un cuerpo editar

Si tenemos un cuerpo  , un anillo   y un homomorfismo unitario de anillos  , tenemos entonces que  , luego   es monomorfismo y podemos considerar que   es un subanillo de   (mediante el primer teorema de isomorfía,   es isomorfo a un subanillo de  ). Un álgebra asociativa sobre un cuerpo K, entonces, puede definirse de manera equivalente como un espacio vectorial sobre K junto con una multiplicación K-bilineal A x A -> A (donde la imagen de (x, y) se escribe como xy) tal que la ley asociativa valga:

  • (x y) z = x (y z) para todo x, y y z en A.

La bilinealidad de la multiplicación se puede expresar como

  • (x + y) z = x z + y z; para todo x, y, z en A,
  • x (y + z) = x y + x z; para todo x, y, z en A,
  • a (x y) = (a x) y = x (a y); para todo x, y en A y a en K.

Si A contiene un elemento identidad, es decir un elemento 1 tales que 1x = x1 = x para todo x en A, entonces llamamos a A un álgebra asociativa con uno o unitaria (o unital). Tal álgebra es un anillo y contiene una copia del cuerpo de base K en la forma {a1: a en K}.

La dimensión del álgebra asociativa sobre el cuerpo K es su dimensión como espacio K-vectorial.

Ejemplos editar

  • Las matrices cuadradas n-por-n con las entradas del cuerpo K forman un álgebra asociativa unitaria sobre K.
  • Los cuaterniones forman un álgebra asociativa unitaria 4-dimensional sobre los reales (pero no un álgebra sobre los números complejos, puesto que los números complejos no conmutan con los cuaterniones).
  • Los polinomios con coeficientes reales forman un álgebra asociativa unitaria sobre los reales.
  • Dado cualquier espacio topológico X, las funciones continuas valoradas en los reales (o los complejos) en X forman un álgebra asociativa unitaria real (o compleja); aquí sumamos y multiplicamos las funciones punto a punto.
  • Un ejemplo de un álgebra asociativa no unitaria viene dado por el conjunto de todas las funciones f: R -> R cuyo límite cuando x se acerca a infinito es cero.

Homomorfismos de álgebra editar

Si A y B son álgebras asociativas sobre el mismo anillo R un homomorfismo de álgebras h: A -> B es un homomorfismo de R-módulos que también es multiplicativa en el sentido que h(xy) = h(x) h(y) para todo x, y en A. Con esta noción de morfismo, la clase de todas las álgebras asociativas sobre R se convierte en una categoría.

Tome por ejemplo el álgebra A de todas las funciones continuas real-valuadas  , y el B =  . ambos son álgebras sobre  , y la función que asigna a cada función continua   el número   (evaluación en 0) es un homomorfismo de álgebras de A a B.

Coálgebras editar

Un álgebra asociativa unitaria sobre R se basa en un morfismo A x AA que tiene 2 entradas (multiplicador y multiplicando) y una salida (el producto), así como un morfismo RA que identificaba los múltiplos escalares de la identidad multiplicativa. Estos dos morfismos pueden ser dualizados con dualidad categorial invirtiendo todas las flechas en los diagramas conmutativos que describen los axiomas del álgebra; esto define una estructura de coálgebra.

Referencias editar