Semianillo

estructura algebraica

En álgebra, un semianillo[1][2]​ es una estructura algebraica más general que un anillo.

Definición editar

Semianillo editar

Dado un conjunto A y dos operaciones binarias + y ·, llamadas adición y multiplicación, la 3-tupla (A,+,·) es un semianillo si satisface las siguientes condiciones:

(A,+) es un semigrupo conmutativo; es decir:

  1. (a + b) + c = a + (b + c) para todo a, b, c en A (asociatividad)
  2. a + b = b + a para todo a, b en A (conmutatividad)

(A,·) es un semigrupo:

  1. (a · b) · c = a · (b · c) para todo a, b, c en A (asociatividad)

La multiplicación distribuye sobre la adición; es decir:

  1. a · (b + c) = a · b + a · c para todo a, b, c en A (distribución por la izquierda)
  2. (a + b) · c = a · c + b · c para todo a, b, c en A (distribución por la derecha)

Si la operación "·" es conmutativa el semianillo se llama semianillo conmutativo o abeliano.

Semianillo unitario editar

Dado un conjunto A y dos operaciones binarias + y ·, llamadas adición y multiplicación, la 3-tupla (A,+,·) es un semianillo si satisface las siguientes condiciones:

(A,+) es un semigrupo conmutativo; es decir:

  1. (a + b) + c = a + (b + c) para todo a, b, c en A (asociatividad)
  2. a + b = b + a para todo a, b en A (conmutatividad)

(A,·) es un monoide con 1 como elemento neutro; es decir:

  1. (a · b) · c = a · (b · c) para todo a, b, c en A (asociatividad)
  2. a · 1 = 1 · a = a para todo a en A (elemento neutro)

La multiplicación distribuye sobre la adición; es decir:

  1. a · (b + c) = a · b + a · c para todo a, b, c en A (distribución por la izquierda)
  2. (a + b) · c = a · c + b · c para todo a, b, c en A (distribución por la derecha)

Si la operación "·" es conmutativa el semianillo unitario se llama semianillo unitario conmutativo o abeliano.

Véase también editar

Referencias editar

  1. García Rua, J.,; Martínez Sánchez, J. M. (1977). «3». En Ministerio de Educación, ed. Matemática básica elemental. p. 56. ISBN 9788436902167. 
  2. Fernandez Nvoa, Jesús (1991). «1». Análisis matemático I (4 edición). UNED. p. 15. ISBN 978-84362-1668-4.