Cyanobacteria

filo del dominio Bacteria
(Redirigido desde «Algas verdeazuladas»)

Las cianobacterias (Cyanobacteria, gr. κυανός kyanós, "azul"), antiguamente llamadas algas verdeazuladas, son un filo del dominio Bacteria que comprende las bacterias capaces de realizar fotosíntesis oxigénica. Son los únicos procariontes que llevan a cabo ese tipo de fotosíntesis, por ello también se les llamó oxifotobacterias (Oxyphotobacteria).[2]

Symbol question.svg
 
Cianobacterias
Rango temporal: 2500–0Ma Sidérico - Holoceno[1]
Lyngbya.jpg
Cianobacteria filamentosa del género Lyngbya sp., recolectada en Baja California, México.
Taxonomía
Dominio: Bacteria
Superfilo: Terrabacteria
Cyanobacteria/Melainabacteria
Filo: Cyanobacteria
Stanier 1973
Clases y órdenes

La taxonomía de las cianobacterias está actualmente en revisión y dista mucho de ser definitiva. Ver [1]

Las cianobacterias fueron designadas durante mucho tiempo como algas cianófitas (Cyanophyta, literalmente "plantas azules") o cianofíceas (Cyanophyceae, literalmente "algas azules"),[3]​ castellanizándose a menudo como algas verde-azuladas o azul verdosas. Cuando se descubrió la distinción entre célula procariota y eucariota se constató que éstas eran las únicas "algas" procariotas, y el término "Cyanobacteria" (se había llamado siempre bacterias a los procariontes conocidos) empezó a ganar preferencia. Los análisis morfológicos y genéticos recientes han venido a situar a las cianobacterias entre las bacterias gramnegativas,[4]​ y lo son también, en algún sentido, sus descendientes que por endosimbiosis dieron lugar a los plastos.

Anatomía y morfologíaEditar

 
Morfología de una cianobacteria ideal
a.- Membrana externa; b.- Capa de peptidoglucano; c.- Membrana plasmática; d.- Citosol; e.- Gránulo de cianoficina; f.- Ribosoma; g.- Gránulo de glucógeno; h.- Cuerpo lipídico; i.- Carboxisoma; j.- Ficobilisoma. k.- Gránulo polifosfato; l.- Vacuola gasífera; m.- Tilacoide; n.- ADN.

Las cianobacterias han sido conocidas también por los nombres de algas verdeazules, verde-azuladas o cloroxibacterias, debido tanto a la presencia de pigmentos clorofílicos que le confieren ese tono característico, como a su similitud con la morfología y el funcionamiento de las algas. Son microorganismos cuyas células miden sólo unos micrómetros (µm) de diámetro, pero su longitud es muy superior a la de la mayoría de las otras bacterias.

CarboxisomasEditar

El citoplasma suele presentar estructuras reconocibles como los carboxisomas, corpúsculos que contienen la enzima ribulosa-1,5-bisfosfato carboxilasa RuBisCO, que realiza la fijación el CO2. por medio del mecanismo de concentración de carbono que usa la energía producida previamente por la fotosíntesis.

Gránulos de almacenamientoEditar

En el citoplasma se encuentran cuerpos lipídicos, gránulos de glucógeno, gránulos de cianoficina, gránulos de polifosfato, que se usan para almacenar energía en forma de carbohidratos y después ser consumidos mediante la respiración celular.

Vesículas de gasEditar

Algunas cianobacterias presentan vesículas gasíferas (llenas de gas) que usan para cambiar su flotabilidad según requieran migrar a zonas de mayor o menor luz. Este comportamiento es típico de cianobacterias que forman parte de la columna de agua.

TilacoidesEditar

Los tilacoides se encuentran postrados en la membrana tilacoidal, formadas por invaginación de la membrana plasmática (con la que suelen conservar comunicación o contacto y es donde reside el aparato molecular de la fotosíntesis llamado ficobilosoma (un conjunto de proteínas que sirven principalmente como antenas recolectoras de luz)

Todas las cianobacterias presentan membrana tilacoidal a excepción de Gloeobacter sp., debido a que es una cianobacteria ancestral, sus tilacoides se encuentran de manera segregada en el citoplasma.

 
Ficobilosoma de una cianobacteria, se muestra las ficobiloproteinas asociadas y la longitud de onda a la que absorben.

RibosomasEditar

Con medios más sofisticados se pueden reconocer estructuras bacterianas como ribosomas (no homólogos de los eucarióticos).

ADNEditar

El ADN de las cianobacterias se encuentra condensado y compactado en un protonucleo.

Membrana o paredEditar

La envoltura está constituida, como en todas las bacterias gramnegativas, por una membrana plasmática y una membrana externa, situándose entre ambas una pared de mureína (peptidoglucano).

Vaina de mucilagoEditar

Las cianobacterias más comunes son unicelulares cocoides (esferoidales), a veces agregadas en una vaina mucilaginosa, o formando filamentos simples o tricomas. Los filamentos pueden aparecer agregados envueltos por mucílago, o de una manera que aparenta ramificación (ramas falsas). Existen además cianobacterias que forman filamentos con ramificación verdadera. El mucilago también tiene excreciones de sustancias poliméricas extracelulares o EPS (por sus siglas en inglés), lo que le confiere a la cianobacteria capacidad de adhesión al substrato, protección contra UV, atrapamiento de detritos y exclusion competitiva de otros microorganismos.

Células especializadasEditar

Las cianobacterias contradicen, como las mixobacterias, el prejuicio según el cual los procariontes no son nunca genuinamente pluricelulares. Son uno de los procariontes más complejos presentando especialización de células y multicelularidad.

HeterocistosEditar

 
Células especializadas de las cianobacterias, se consideran de los procariontes mas complejos, debido a la diferenciación y especialización de alguna de sus células.

Son células especializadas en la fijación de nitrógeno. Entre las células de un filamento hay una comunicación íntima, en forma de microplasmodesmos, y existe además algún grado de especialización de funciones. La diferencia más notable la ofrecen los heterocistos, células especiales que sólo se presentan en un clado de cianobacterias. Los heterocistos aparecen como células más grandes y de pared engrosada intercaladas en los filamentos. Recientemente se ha confirmado que su pared presenta celulosa, el polímero más abundante en las paredes celulares de las plantas. Los heterocistos contienen la maquinaria de fijación del nitrógeno, proceso que es incompatible con la fotosíntesis, ya que el oxígeno inhibe a la nitrogenasa.

AcinetosEditar

Los acinetos; son células de reserva que se vuelven más grandes, con una pared más gruesa que las células vegetativas, a veces con pequeñas protuberancias; poseen un citoplasma granuloso debido a la acumulación de gran cantidad de cianoficina como sustancia de reserva. Entre la pared y las capas mucilaginosas segregan una nueva capa fibrosa. Tienen un metabolismo reducido y soportan condiciones de vida desfavorables.[5]

BeocitosEditar

Son células donde se lleva a cabo la fisión múltiple, un tipo de reproducción asexual. También son conocidos como exocitos o nanocitos

NecridiosEditar

Son células que se sacrifican haciendo un tipo de pseudo-apoptosis, para que un tricoma de cianobacteria pueda dividirse y seguir creciendo en otra dirección, estos pueden formar ramas falsas cuando no se rompe por completo el mucilago, o formar hormogonios cuando las ceulas resultantes se separan por completo del tricoma.

HormogoniosEditar

Son filamentos cortos móviles con fototaxis de células formadas durante la reproducción asexual en la particion del tricoma (fila de ceulas) de cianobacterias del orden Oscillatoriales y Nostocales,

CalcicitoEditar

Son células que almacenan calcio para su desecho, ya que algunas especies endoliticas pueden remover el calcio de sustratos calcáreos para perforar y enterrarse en el sedimento.[6]

FisiologíaEditar

 
Anabaena flosaquae (Nostocales), una cianobacteria filamentosa.

Las cianobacterias son en general organismos fotosintetizadores, pero algunas viven heterotróficamente, como descomponedoras, o con un metabolismo mixto. Las cianobacterias comparten con algunas otras bacterias la capacidad de usar N2 atmosférico como fuente de nitrógeno.

Fotosíntesis oxigénicaEditar

Las cianobacterias fueron las primeras en realizar una variante de la fotosíntesis que ha llegado a ser la predominante, y que ha determinado la evolución de la biosfera terrestre. Se trata de la fotosíntesis oxigénica. La fotosíntesis necesita un reductor (una fuente de electrones), que en este caso es el agua (H2O). Al tomar el H del agua se libera oxígeno. La explosión evolutiva y ecológica de las cianobacterias, presentes desde hace al menos 2.700 millones de años [7]​, dio lugar a la acumulación de oxígeno en la atmósfera, donde alcanzó concentraciones similares a las actuales hace unos 2470 millones de años [8]​, sentando las bases para la aparición del metabolismo aerobio y la radiación de los organismos eucariontes.

Fotosíntesis anoxigénicaEditar

Algunas cianobacterias aun son capaces de realizar fotosíntesis anoxigénica (puesto que sus antecesores evolutivos realizaban este metabolismo) en presencia de Ácido sulfhídrico (H2S) liberando azufre S2 en el proceso, también pueden usar Arsénico (As III)o Hidrógeno (H+) como donador de electrones. Se ha reportado a Pseudanabaena, Aphanothece y a Oscillatoria limnetica con esta capacidad a la vez que también llevan a cabo fotosíntesis oxigénica dependiendo de los compuestos disponibles podrán realizar una u otra fotosintesis, los mecanismos de alternenancia de metabolismo aun no estan descritos a nivel molecular. [9]

Fijación de nitrógenoEditar

 
Chroococcus turgidis se clasifica dentro del orden Chroococcales, es una cianobacteria indicadora de ambientes acuáticos oligotróficos.

Las cianobacterias comparten con distintas bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4+), una forma de nitrógeno que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa; este es el caso de las plantas. La enzima que realiza la fijación del nitrógeno es la nitrogenasa, que es inhibida por el oxígeno, con lo cual se hace incompatible con la fotosíntesis y, por tanto, en muchas cianobacterias los dos procesos se separan en el tiempo, realizándose la fotosíntesis durante las horas de luz y la fijación de nitrógeno solamente por la noche. Algunas especies han solucionado el problema mediante los heterocistes, unas células más grandes y con una pared engrosada con celulosa y que se encargan de la fijación del nitrógeno; en los heterocistes no hay fotosistema II, de modo que no hay desprendimiento de oxígeno y la nitrogenasa puede actuar sin problemas.[10]

Algunas cianobacterias son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Esto es fácilmente apreciable en cultivos de arroz ubicados en China y Vietnam, en los que en 1988 se notó un incremento del 5% en la producción del cereal antes mencionado debido principalmente a la mejora de la calidad del nitrógeno fijado y a que las cianobacterias funcionan como reguladores ecológicos, por lo que adquieren funciones de herbicidas y plaguicidas.[11]​ Dada su abundancia en distintos ambientes, las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores

FermentaciónEditar

Algunas cianobacterias son mixótrofas, es decir pueden ser tanto autótrofas (obtener energía de la luz) como heterótrofas (obtener energía de materia orgánica). Se ha documentado que especies como Synechococcus pueden hacer fermentación en la noche para obtener energía, entre los genes de fermentación de Synechococcus se encuentran pflB, pflA, adhE, and acs [12]​.

RespiraciónEditar

La respiración en las cianobacterias puede ocurrir en la membrana tilacoide donde tambien se lleva la fotosíntesis. Si bien el objetivo de la fotosíntesis es almacenar energía y la construcción de carbohidratos a partir de CO2, en la respiración pasa lo contrario, la energía obtenida previamentese se usa para romper los carbohidratos y obtener mas energía liberando CO2.

Las cianobacterias parecen separar estos dos procesos con su membrana plasmática que contiene solo componentes de la cadena respiratoria, mientras que la membrana tilacoide alberga una cadena de transporte de electrones respiratoria y fotosintética interconectada. Las cianobacterias usan electrones de la succinato deshidrogenasa en lugar de NADPH para la respiración[13]​.

Las cianobacterias solo respiran durante la noche (o en la oscuridad) porque las instalaciones utilizadas para el transporte de electrones se usan en reversa para la fotosíntesis mientras están a la luz.

MetanogénesisEditar

El paradigma de que la metanogénesis biogénica, considerada un proceso estrictamente anaerobio, exclusiva de arqueas cambió en 2020. Un trabajo demostró que las cianobacterias que viven en ambientes marinos, de agua dulce y terrestres producen metano a tasas sustanciales en condiciones de luz, oscuridad, oxígeno y anoxigenia, vinculando la producción de metano con la productividad primaria. La producción de metano, atribuida a las cianobacterias mediante técnicas de etiquetado de isótopos estables, mejora durante la fotosíntesis oxigenica. La formación de metano por las cianobacterias contribuye a la acumulación de metano en aguas superficiales marinas y zonas saturadas de oxígeno. En estos entornos, se predice que las floraciones de cianobacterias aumentarán aún más debido a que el calentamiento global puede tener una retroalimentación positiva. Las cianobacterias probablemente han estado produciendo metano desde que evolucionaron por primera vez en la Tierra.[14]

ReproducciónEditar

 
Cianobacterias del orden Pleurocpasales presentan estructuras llamadas beocitos, producto de la fision múltiple donde una célula madre se divide repentinamente en varias células hijas.

Las cianobacterias al ser bacterias solo tienen reproducción asexual, sin embargo, algunas cianobacterias tienen mecanismos de reproducción únicos dentro de las bacterias, presentando células especializadas para esta función.

Fisión binariaEditar

La fisión binaria es cuando una célula madre crece y entonces se divide a la mitad dando lugar a dos células hijas, es el tipo de reproducción mas común dentro del orden Synechococcales pudendo ser de manera bipolar o apolar.

Fisión múltipleEditar

La fisión múltiple es cuando una célula madre se divide de manera instantánea o secuencial sin crecer previamente en fragmentos irregulares llamados beocitos. Se presenta en cianobacterias del orden Pleurocapsales.

GemaciónEditar

La gemación es cuando una célula madre se fragmenta por los extremos dando lugar a los nanocitos o exocitos que después se liberan, este tipo de reproducción solo se ha observado en Chamaesiphon.

FragmentaciónEditar

Cuando el tricoma de un filamento se quiebra en dos, esto es posible gracias a una célula que se sacrifica llamada necridio, entonces los extremos pueden separarse formando dos filamentos o bien, pueden quedarse unidos dentro del mismo mucilago formando una rama falsa

EvoluciónEditar

 
Evolución de las cianobacterias[15]

Los ancestros de las cianobacterias posiblemente se originaron hace 3500 millones de años, aunque hay evidencia de que pudieron haber surgido hace 3.700 millones de años[16]​.

Su origen y su capacidad de evolucionar la fotosíntesis oxigénica, significó un cambio eminentemente en los ciclos biogeoquímicos de la tierra, ya que cambiaron la atmósfera de un estado reducido a un estado oxidado.

Una hipótesis sugiere que las cianobacterias pudieron evolucionar de un ancestro en común, de una protocianobacteria del grupo Melainabacteria, que son bacterias no fotosintéticas. Las cianobacterias también pudieron divergir cuando las protocianobacterias del grupo Sericytochromatia tuvieron la capacidad de hacer algún tipo de fotosíntesis[17][18]​.

 
Microbialitos vivos en Highbourne Cay (Bahamas). Los microbialitos fueron una de las primeras comunidades microbianas en albergar cianobacterias

Otra hipótesis propone que el ancestro de la cianobacteria debió ser una bacteria fotosintética anoxigénica parecida a una bacteria púrpura del azufre, que posteriormente incorporó un genoma parecido al de las bacteria verdes del no azufre, ya que las cianobacterias poseen fotosistemas análogos al de estas dos bacterias, incluso algunas cianobacterias aún conservan la capacidad de realizar fotosíntesis anoxigenica y pueden usar como donador de electrones Hidrógeno (H+) o Ácido sulfhídrico (H2S) [19][20]​.

La capacidad de usar el agua (H2O) como donador de electrones en la fotosíntesis involucra acoplar dos fotosistemas, y es un proceso bioquímico muy costoso, debido la fuerza con la que el hidrógeno se enlaza al oxígeno. Sin embargo, al desprenderse estas moléculas, se libera una cantidad de energía 10 veces mayor al de la fotosíntesis anoxigénica, lo que se traduce en una obtención de energía mas rápida. El desecho de este proceso es el oxígeno, que es muy tóxico para la mayoría de las bacterias. Sin embargo, las cianobacterias pudieron hacerse resistentes a su propio desecho[21]​.

La evolución de la fotosíntesis oxigénica marco un hito en la historia evolutiva de la tierra, siendo las cianobacterias los únicos organismos que han podido generar la fotosíntesis oxigénica a partir de cero. La cuestión de cuándo evolucionó la fotosíntesis oxigénica exactamente sigue siendo motivo de debate e investigación, aunque se tiene evidencias de que evolucionó mucho antes del gran evento de oxidación (2450-2.320 millones de años atrás) coincidiendo con la evidencia geoquímica y molecular[22]​ .

 
Formación fósil de Oncolitos y Estromatolitos de Vendían, Bolivia en el museo de ciencia natural de Houston.

Las cianobacterias tuvieron un papel clave en la acumulación paulatina de oxígeno en la atmósfera terrestre, como resultado hubo un cambio trascendental en las condiciones ecológicas para la vida en la Tierra y es posible que hayan causado una de las primeras extinciones masivas del mundo microbiano, al cambiar tan dramáticamente el medio también se propone que este cambio de condiciones atmosféricas favoreció que la tierra se cubriera completamente en nieve, dando origen a una glaciación global al menos dos veces[23]​. Esto a la vez permitió que surgieran otras formas de vida mas complejas como los primeros organismos eucariontes, que empezaban a usar oxígeno de manera heterótrofa[24]​.

Las cianobacterias fueron los principales productores primarios de la biosfera durante al menos 1.500 millones de años, y lo siguen siendo en los océanos, aunque desde hace 300 millones de años han cobrado importancia distintos grupos de algas eucarióticas (las diatomeas, los dinoflagelados y los haptófitos o cocolitofóridos). Es importante remarcar que la novedad evolutiva de realizar fotosinteis oxigenica no ha podido ser desarrollada por ningún otro organismo fotosintético, en cambio esta capacidad ha pasado a los diferentes organismos por simbiosis, como es el caso de los cloroplastos de las algas y las plantas. Los cloroplastos son en realidad cianobacterias simbiontes con organismos eucariontes[25]​.

Se tienen claras evidencias que hace unos 2.000 millones existía ya una biota diversa de cianobacterias, que fueron los principales productores primarios durante el eón Proterozoico (2500-543 millones de años atrás), en parte porque la estructura redox de los océanos favoreció a los fotoautótrofos y la fijación del nitrógeno. Al final del Proterozoico, se les unieron las algas verdes, pero no fue hasta el Mesozoico (251-65 millones de años) que la radiación de los dinoflagelados, cocolitoforales y diatomeas restaron parte del protagonismo a las cianobacterias. Las cianobacterias adquirieron la capacidad de fijar Nitrógeno del aire para convertirlo en amonio aproximadamente hace 2500 millones de años[26]​. 

En la actualidad, las cianobacterias son claves en los ecosistemas acuáticos como productores primarios y como agentes fijadores de nitrógeno.[27]


Origen de los plastosEditar

 
Filogenia de los plastos que se originaron a partir de una cianobaceria ancestral.

Los plastos son orgánulos que se encuentran en el citoplasma de las células de las plantas y de las algas. Su función inicial es la de permitir la transformación de energía lumínica en energía química (fotosíntesis). Ya a finales del siglo XIX se postuló su origen como células independientes adquiridas por una forma de simbiosis. Se propuso que los cloroplastos podrían haberse originado a partir de Prochlorales, debido a sus semejanzas. Investigaciones realizadas en los 80 consideraron que derivan de cianobacterias próximas a Synechococcus, que contiene clorofila a y ficobiliproteínas al igual que los cloroplastos de las algas rojas. Análisis genéticos (proteína RuBisCO y ARN 16S) se inclinan por una relación con Chroococcales,[28]​ mientras que análisis a nivel de proteínas plastidiales encontró que los plastos resultarían ser un clado hermano de la cianobacteria de agua dulce Gloeomargarita.[29]

La captura de una cianobacteria que condujo a los plastos ocurrió una sola vez, hace aproximadamente 1400 millones de años en un ancestro del clado llamado Primoplantae, posiblemente la cianobacterias que originó el plástido original ancestral fue hermana directa Gloeomargarita lithophora teniendo relación con la rama basal de los Synechococcus[30], originando la estirpe que conduce a las algas rojas (Rhodophyta) y las algas verdes (Chlorophyta), pero luego en la evolución plastidial se han producido fenómenos de simbiosis secundaria que han originado la gran diversidad actual de los plastos. Hay un grupo de algas eucariotas, los glaucocistófitos (Glaucocystophyta), cuyos plastos conservan el máximo parecido con una cianobacteria de vida libre, incluida la pared de mureína entre las dos membranas de la envoltura. Las algas rojas tienen en su aparato fotosintético la misma clase de pigmentos auxiliares, las ficobilinas, que caracterizan a las cianobacterias.

Cianobacterias «verdes»Editar

Algunas cianobacterias tienen, como las algas verdes y las plantas, clorofila b, a la vez que carecen de ficobilinas. Su color es el verde típico de las plantas. Algunos supusieron, con buenos motivos, que éstas son las cianobacterias de las que derivarían los plastos verdes de plantas y algas verdes, por lo que fueron llamadas Prochlorophyta. Los análisis genéticos no han confirmado esta hipótesis. Los tres géneros conocidos, Prochloron (simbionte de tunicados), Prochlorococcus (unicelular de vida libre), y Prochlorothrix (filamentosa de vida libre) no guardan entre sí un parentesco estrecho; ello demuestra que, de alguna forma, la condición «verde» se adquiere fácilmente y ha aparecido independientemente en las tres líneas y en la de los plastos. El aparato fotosintético «verde» es favorecido por un ambiente luminoso y rico en oxígeno. Lo último fue producido precisamente por la expansión de cianobacterias y plastos y lo segundo se requiere (por intermedio de la ozonosfera) para hacer habitables los ambientes luminosos, protegidos así de la radiación ultravioleta. No es extraño que, una vez generadas tales condiciones, se haya producido una evolución convergente repetida.[cita requerida]

FilogeniaEditar

La filogenia de las cianobacterias aún no está consensuada, los estudios filogenéticos coinciden en que Gloeobacter tiene la posición basal más temprana,[27]​ pero los demás grupos han dado diversos resultados. Una versión sobre las relaciones filogenéticas sobre la base de secuencias moleculares (2008) es la siguiente[31]​ (los grupos en comillas figuran como parafiléticos):

Cyanobacteria 

 Gloeobacter


 

 Synechococcales (inc. Prochlorales)


 
simbiogénesis

 cloroplastos




 Chroococcales (inc. Pleurocapsales)


 

 "Oscillatoriales"


 

 "Nostocales"


 

 Stigonematales








Otro estudio filogenético (2010) da el siguiente resultadoː[28]

Cyanobacteria 

 Gloeobacter


 

 "Oscillatoriales"



con heterocistos

 "Nostocales"


 

 Stigonematales



 unicelulares

 cloroplastos




 "Chroococcales"



 Pleurocapsales







Un estudio más reciente (2014) propone otra taxonomía, absorbe las Stigonematales dentro de las Nostocales[32]​ː

Cyanobacteria 

 Gloeobacterales


 

 "Synechococcales"


 

 "Oscillatoriales"





 Spirulinales




 Chroococcales



 Pleurocapsales






 Chroococcidiopsidales



 Nostocales







TaxonomíaEditar

La taxonomía de las cianobacterias está regida por dos códigos, el Código Internacional de Nomenclatura de Bacterias y el Código Internacional de Nomenclatura Botánica; esta duplicidad de nomenclatura causa una gran confusión.[33]​ Se estima que existen alrededor de 5000 a 6280 especies[34]​.

Como ya se ha comentado, las cianobacterias son un grupo muy heterogéneo, y su clasificación responde más a criterios didácticos que sistemáticos. La taxonomía de las cianobacterias está actualmente en revisión. La clasificación que sigue, con nomenclatura botánica, es la propuesta por Cavalier-Smith en 2002:[35]

Reino Bacteria

EcologíaEditar

Las cianobacterias son posiblemente el grupo de microorganismos más exitoso en la Tierra.[cita requerida] Son los más genéticamente diversos. Las cianobacterias cumplen funciones ecológicas vitales en los océanos del mundo, siendo importantes contribuyentes a los presupuestos globales de carbono y nitrógeno.

Las cianobacterias ocupan una amplia gama de hábitats en todas las latitudes, se pueden encontrar en casi todos los hábitats terrestres y acuáticos: océanos, agua dulce, sistemas hipersalinos, lagos alcalinos, suelos húmedo, humedales, aguas termales, tapetes de desiertos, rocas y suelos desnudos, incluso rocas antárticas y bajo el hielo. Su capacidad de dispersión es alta y es común que se dispersen por lluvia en nubes. Pueden aparecer como células planctónicas o formar biopelículas fototróficas. Se encuentran en el ecosistema endolíticos. Algunos son endosimbiontes en líquenes, plantas, protistas o esponjas y proporcionan energía para el huésped. Algunos viven en el pelaje de los perezosos, proporcionando una forma de camuflaje.

Se ha encontrado que las cianobacterias juegan un papel importante en los hábitats terrestres. Se ha informado ampliamente que las costras de cianobacterias del suelo ayudan a estabilizar el suelo para evitar la erosión y retener el agua. Un ejemplo de una especie de cianobacterias que lo hace es Microcoleus vaginatus. M. vaginatus estabiliza el suelo usando una vaina de polisacárido que se une a las partículas de arena y absorbe agua. [lgunos de estos organismos contribuyen significativamente a la ecología global y al ciclo del oxígeno. La pequeña cianobacteria marina Prochlorococcus fue descubierta en 1986 y representa más de la mitad de la fotosíntesis del océano abierto. Se pensaba que los ritmos circadianos existían solo en las células eucariotas, pero muchas cianobacterias muestran un ritmo circadiano bacteriano.

Proliferaciones de cianobacterias (blooms)Editar

 
Florecimiento de Nodularia sp. en el mar Baltico (fotografía NASA)

Las cianobacterias colonizan numerosos ecosistemas terrestres y acuáticos. Sin embargo, en ambientes acuáticos es donde especialmente se agregan, dando lugar a formaciones típicas conocidas como floraciones, proliferaciones o blooms. Estas proliferaciones en masa ocurren en aguas eutróficas ricas en nutrientes (particularmente fosfatos, nitratos y amoníaco) bajo temperaturas medianamente altas (15 a 30 °C) y donde el pH oscila entre 6 y 9. Con todo, las proliferaciones cianobacterianas necesitan aguas poco revueltas y sin vientos para poder desarrollarse.

Dichos blooms, resultan muy antiestéticos e indeseables en aguas de recreo ya que cambian el aspecto del agua y causan turbidez además de que la materia organica que generan causa que otras bacterias heterotroficas se coman sus productos secundarios formando gases como CO2 y CH4. También se sabe que las cianobacterias pueden respirar durante la noche lo que causa un estado anoxigénico del cuerpo de agua lo que provoca la mortaidad de animales por anoxigenia si el cuerpo de agua es muy reducido como lagos poco profundos o peceras. Gracias a un metabolismo secundario muy activo, son capaces de sintetizar un gran número de compuestos orgánicos como antibióticos, antivirales, antitumorales, y también otros compuestos como la geosmina y el 2-metil-isoborneol, que confiere al agua de grifo un sabor desagradable. Hay que añadir a todos estos compuestos toxinas responsables de varios episodios conocidos de mortandad de vertebrados (peces, así como ganado y otros animales que beben de las aguas afectadas por el bloom) por ingestión de cianobacterias concentradas en la orilla por la acción del viento.

Los blooms de cianobacterias planctónicas, son importantes en el secuestro y exportación de carbono de la atmósfera [36]​. Por la precipitación extracelular que estas tienen después de un bloom, este fenómeno es conocido como blanqueamiento o whitening. Las cianobacterias catalizan la precipitación in situ de partículas de CaCO3 de grano fino en sus superficies celulares, lo que conduce a la precipitación de carbonato en el fondo del océano o de lagos[37]​.

ToxicidadEditar

Algunas cianobacterias producen toxinas y pueden envenenar a los animales que habitan el mismo ambiente o beben el agua. Se trata de una gran variedad de géneros y especies; algunas producen toxinas muy específicas y otras producen un espectro más o menos amplio de tóxicos. El fenómeno se hace importante sólo cuando hay una floración (una explosión demográfica), lo que ocurre a veces en aguas dulces o salobres, si las condiciones de temperatura son favorables y abundan los nutrientes, sobre todo el fósforo (eutrofización de las aguas). Los géneros más frecuentemente implicados en floraciones son Microcystis, Anabaena y Aphanizomenon. Los mecanismos fisiológicos de la intoxicación son variados, con efectos tanto citotóxicos (atacantes de las células), como hepatotóxicos (atacantes del hígado) o neurotóxicos (atacantes del sistema nervioso).

Entre las toxinas mas comunes se encuentran las microcistinas, las nodularinas, las cilindrospermopsinas, anatoxinas saxitoxinas, la beta-metilamino-L-alanina (BMAA) y algunos lipopolisacáridos.

Según los modelos y observaciones ambientales sugieren que las cianobacterias probablemente aumentarán su dominio en los ambientes acuáticos. Esto puede tener graves consecuencias, en particular la contaminación de las fuentes de agua potable. Las cianobacterias pueden interferir con el tratamiento del agua de varias maneras, principalmente al taponar los filtros (a menudo grandes lechos de arena y medios similares) y al producir cianotoxinas, que pueden causar enfermedades graves si se consumen.

Las consecuencias también pueden recaer en las prácticas de pesca y gestión de residuos. La eutrofización antropogénica, el aumento de las temperaturas, la estratificación vertical y el aumento del dióxido de carbono atmosférico contribuyen a que las cianobacterias dominen cada vez más los ecosistemas acuáticos. [31]

Aplicaciones de las cianobacteriasEditar

 
Arthrospira, una cianobacteria usada como complemento dietético.

Hay géneros como Spirulina, que se pueden consumir debido a su alto contenido de caroteno, que es utilizado como antioxidante y se transforma en vitamina A al entrar en el organismo.[38]

No sólo sirven para la alimentación en humanos, se ha comprobado en los campos de cultivo de arroz antes mencionados, que al momento de introducir cianobacterias junto con su simbionte Azolla se han desarrollado cardúmenes de peces, que se alimentan a su vez del exceso de cianobacterias que habiten el cultivo, fomentando indirectamente la pesca.[39]

Las cianobacterias Synechocystis y Cyanothece son organismos modelo importantes con aplicaciones potenciales en biotecnología para la producción de bioetanol, colorantes alimentarios, como fuente de alimentos para humanos y animales, suplementos dietéticos y materias primas [40]​.

Existe interés de usar cianobacterias del orden Chroococcidiopsis para la colonización de marte, ya que por su ecología endolítica, resisten bajas temperaturas, alta radiación UV y alta desecación[41]​.

También se ha propuesto a algunas cianobacterias con capacidad de precipitación de carbonatos como una herramienta en el secuestro de carbón atmosférico.

Véase tambiénEditar

ReferenciasEditar

  1. Zhu, Q., Mai, U., Pfeiffer, W. et al. (2019) «Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea». Nature Communications, 10: 5477
  2. Laboratorio de Plantas Vasculares, Facultad de Ciencias, UNAM. «CIANOBACTERIAS (CYANOBACTERIA)». UNAM. Consultado el 21 de septiembre de 2015. 
  3. «Cianofíceas». www.duiops.net. Consultado el 16 de octubre de 2017. 
  4. «Algas Cianofitas - EcuRed». www.ecured.cu. Consultado el 16 de octubre de 2017. 
  5. Llimona, X. et al., 1985. Plantes inferior. Història Natural dels Països Catalans, 4. Enciclopèdia Catalana, S. A., Barcelona, 558 pp. ISBN 84-85194-64-0
  6. Guida, Brandon S.; Garcia-Pichel, Ferran (28 de enero de 2016). «Draft Genome Assembly of a Filamentous Euendolithic (True Boring) Cyanobacterium, Mastigocoleus testarum Strain BC008». Genome Announcements 4 (1). ISSN 2169-8287. doi:10.1128/genomea.01574-15. Consultado el 11 de junio de 2020. 
  7. Fischer, Woodward W.; Hemp, James; Johnson, Jena E. (2016-06-29). «Evolution of Oxygenic Photosynthesis». Annual Review of Earth and Planetary Sciences 44 (1): 647-683. ISSN 0084-6597. doi:10.1146/annurev-earth-060313-054810. Consultado el 2020-07-07. 
  8. Gumsley, Ashley P.; Chamberlain, Kevin R.; Bleeker, Wouter; Söderlund, Ulf; de Kock, Michiel O.; Larsson, Emilie R.; Bekker, Andrey (2017-02-06). «Timing and tempo of the Great Oxidation Event». Proceedings of the National Academy of Sciences 114 (8): 1811-1816. ISSN 0027-8424. doi:10.1073/pnas.1608824114. Consultado el 2020-07-07. 
  9. Klatt, Judith M.; Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos (9 de enero de 2015). «Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring». Applied and Environmental Microbiology 81 (6): 2025-2031. ISSN 0099-2240. doi:10.1128/aem.03579-14. Consultado el 24 de marzo de 2020. 
  10. Jimeno, A. & Ballesteros, M. 2009. Biología 2. Grupo Promotor Santillana. ISBN 974-84-7918-349-3
  11. Richmond, A. (2004). Handbook of microalgal culture. John Wiley & Sons. Oxford, UK. Pp. 392-403
  12. Steunou, Anne-Soisig; Bhaya, Devaki; Bateson, Mary M.; Melendrez, Melanie C.; Ward, David M.; Brecht, Eric; Peters, John W.; Kühl, Michael et al. (2006-02-07). «In situanalysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats». Proceedings of the National Academy of Sciences 103 (7): 2398-2403. ISSN 0027-8424. doi:10.1073/pnas.0507513103. Consultado el 2020-07-07. 
  13. Vermaas, Wim FJ (2001-04-25). «Photosynthesis and Respiration in Cyanobacteria». Encyclopedia of Life Sciences (John Wiley & Sons, Ltd). ISBN 0-470-01617-5. Consultado el 2020-07-07. 
  14. Bižić-Ionescu, M. (25 de agosto de 2018). «Widespread methane formation by Cyanobacteria in aquatic and terrestrial ecosystems». dx.doi.org. Consultado el 24 de marzo de 2020. 
  15. Schirrmeister, Bettina E.; Gugger, Muriel; Donoghue, Philip C. (14 de agosto de 2015). «Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils». Palaeontology 58 (5): 935-936. ISSN 0031-0239. doi:10.1111/pala.12193. Consultado el 25 de marzo de 2020. 
  16. Domínguez, Nuño (18 de octubre de 2018). «Guerra abierta por el fósil más antiguo del mundo». El País. ISSN 1134-6582. Consultado el 29 de enero de 2020. 
  17. Rochelle M. Soo., James Hemp., Donovan H. Parks., Woodward W. Fischer.Philip Hugenholtz (2017). «On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science». 2017. 
  18. Soo, Rochelle M.; Hemp, James; Parks, Donovan H.; Fischer, Woodward W.; Hugenholtz, Philip (31 de marzo de 2017). «On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria». Science (en inglés) 355 (6332): 1436-1440. ISSN 0036-8075. doi:10.1126/science.aal3794. Consultado el 31 de enero de 2020. 
  19. Peleato Sánchez, María Luisa. «Las cianobacterias: cooperación versus competencia. Real academia de ciencias exactas, fisicas, quimicas y naturales de zaragoza.». 2011. 
  20. Mulkidjanian, A.Y., Koonin, E.V., Makarova, K.S. «The cyanobacterial genome core and the origin of photosynthesis, Proc. Natl. Acad. Sci». 2006. 
  21. Latifi, Amel; Ruiz, Marion; Zhang, Cheng-Cai (1 de marzo de 2009). «Oxidative stress in cyanobacteria». FEMS Microbiology Reviews (en inglés) 33 (2): 258-278. ISSN 0168-6445. doi:10.1111/j.1574-6976.2008.00134.x. Consultado el 30 de marzo de 2020. 
  22. Wang, Xiangli; Planavsky, Noah J.; Hofmann, Axel; Saupe, Erin E.; De Corte, Brian P.; Philippot, Pascal; LaLonde, Stefan V.; Jemison, Noah E. et al. (1 de octubre de 2018). «A Mesoarchean shift in uranium isotope systematics». Geochimica et Cosmochimica Acta (en inglés) 238: 438-452. ISSN 0016-7037. doi:10.1016/j.gca.2018.07.024. Consultado el 31 de enero de 2020. 
  23. Hoffman, P. F. (28 de agosto de 1998). «A Neoproterozoic Snowball Earth». Science 281 (5381): 1342-1346. doi:10.1126/science.281.5381.1342. Consultado el 30 de marzo de 2020. 
  24. Shaw, George H. (2018). Great Moments in the History of Life. Springer International Publishing. pp. 41-46. ISBN 978-3-319-99216-7. Consultado el 30 de marzo de 2020. 
  25. Cavalier-Smith, T (2002-01). «Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses». Current Biology 12 (2): R62-R64. ISSN 0960-9822. doi:10.1016/s0960-9822(01)00675-3. Consultado el 30 de marzo de 2020. 
  26. Berman-Frank, Ilana; Lundgren, Pernilla; Falkowski, Paul (2003-04). «Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria». Research in Microbiology 154 (3): 157-164. ISSN 0923-2508. doi:10.1016/s0923-2508(03)00029-9. Consultado el 30 de marzo de 2020. 
  27. a b Herrero, A. & Flores, E, (editores). (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution (1st edición). Caister Academic Press. ISBN 978-1-904455-15-8 . 
  28. a b Falcón LI, Magallón S y Castillo A. 2010. Dating the cyanobacterial ancestor of the chloroplast. ISME J. 2010 Jun;4(6):777-83. doi: 10.1038/ismej.2010.2. Epub 2010 Mar 4.
  29. Rafael Ponce et al. 2017, An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Current Biology Vol. 27, Cap. 3, P386-391, DOI:https://doi.org/10.1016/j.cub.2016.11.056
  30. Ponce-Toledo, Rafael I.; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Benzerara, Karim; Moreira, David (2017). «An early-branching freshwater cyanobacterium at the origin of plastids". Curr Biol.». 2017. 
  31. Enrique Flores AH (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution. Horizon. p. 3. ISBN 1-904455-15-8. 
  32. Komárek, Jiří (26 de marzo de 2015). «Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014». Hydrobiologia 764 (1): 259-270. ISSN 0018-8158. doi:10.1007/s10750-015-2242-0. Consultado el 7 de octubre de 2019. 
  33. Oren, A. 2004. A proposal for further integration of the cyanobacteria under the Bacteriological Code. Int. J. Syst. Evol. Microbiol., 54: 1895-1902; DOI 10.1099/ijs.0.03008-0
  34. Nabout, João Carlos; da Silva Rocha, Barbbara; Carneiro, Fernanda Melo; Sant’Anna, Célia Leite (2013-10-04). «How many species of Cyanobacteria are there? Using a discovery curve to predict the species number». Biodiversity and Conservation 22 (12): 2907-2918. ISSN 0960-3115. doi:10.1007/s10531-013-0561-x. Consultado el 2020-07-07. 
  35. «Cavalier-Smith, T. 2002. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol., 52: 7-76.». Archivado desde el original el 6 de julio de 2008. Consultado el 22 de noviembre de 2009. 
  36. Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Nayak, Bikram; Lindblad, Peter; Das, Debabrata (2011-04). «Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria». Bioresource Technology 102 (8): 4945-4953. ISSN 0960-8524. doi:10.1016/j.biortech.2011.01.054. Consultado el 2020-07-07. 
  37. Schultze-Lam, Susanne; Schultze-Lam, Susanne; Beveridge, Terrance J.; Des Marais, David J. (1997-01). «Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton». Limnology and Oceanography 42 (1): 133-141. ISSN 0024-3590. doi:10.4319/lo.1997.42.1.0133. Consultado el 2020-07-07. 
  38. Ciferri, O. (1983). Spirulina, the Edible Microorganism. Microbiological Reviews. 47(4). Pp.572-573. 0146-0749/83/040551-28S02.00/0
  39. Richmond, A. (2004). Handbook of microalgal culture. John Wiley & Sons. Oxford, UK. Pp. 392-403
  40. Zhang, X.; Sherman, D. M.; Sherman, L. A. (6 de diciembre de 2013). «The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity». Journal of Bacteriology 196 (4): 840-849. ISSN 0021-9193. doi:10.1128/jb.01248-13. Consultado el 30 de marzo de 2020. 
  41. Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela (2013). «The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes.». Acta Astronautica 91: 180-186. ISSN 0094-5765. Consultado el 20 de mayo de 2020. 

BibliografíaEditar

  • Chapman, L.E. & Wilcox. L.W. (2000) Algae. Prentice Hall, Upper Saddle River, N.J.
  • Rippka, Rosmarie, Josette Deruelles, John B. Waterbury, Michael Herdman & Roger Y. Stanier (1979). Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology Vol. 111 p. 1-61

Enlaces externosEditar