Conjunción lógica

operador lógico, and

En razonamiento formal, una conjunción lógica ( ) entre dos proposiciones es un conector lógico cuyo valor de la verdad resulta en cierto solo si ambas proposiciones son ciertas, y en falso de cualquier otra forma.[1]​ Existen diferentes contextos donde se utiliza la conjunción lógica.

Conjunción lógica

Diagrama de Venn de la conectiva
Nomenclatura
Lenguaje natural A y B
A pero B
Lenguaje formal
Operador booleano
Operador de conjuntos
Puerta lógica
Símbolo ANSI para la Conjunción lógica
Tabla de verdad

En lenguajes formales, el conectivo "y" se utiliza en español para simbolizar una conjunción lógica. La noción equivalente en la teoría de conjuntos es la intersección ( ). En álgebra booleana, la conjunción como operador binario entre dos variables se representa con el símbolo de punto medio ( · ).

En electrónica, una puerta AND es una puerta lógica que implementa la conjunción lógica.

Lógica de proposiciones

editar

Siendo   el conjunto de proposiciones, y   proposiciones de  , se puede definir la operación binaria: conjunción, por la que a una variable   de   se le asigna el valor de la conjunción del par ordenado de la variables   de  .

 

Definición

editar

Dado un conjunto universal U formado por los elementos falso: F y verdadero: V:

 

y una operación binaria interna conjunción  , que representaremos  :

 

por la que definimos una aplicación que a cada par ordenado (a,b) de U por U se le asigna un c de U.

 

Para todo par ordenado (a,b) en U por U, se cumple que existe un único c en U, tal que c es el resultado de la conjunción lógica a y b.

Lenguaje formal

editar

Si declaraciones en un lenguaje formal representan proposiciones en lógica proposicional con contenido de verdad o falsedad, entonces una conjunción lógica es cierta solo si ambas declaraciones son ciertas.

Álgebra Booleana

editar

Dado un conjunto B = {0, 1}, se define · como una función tal que:

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1

Propiedades

editar

La conjunción lógica presenta las siguientes propiedades:

 
 
  • 3. La ley conmutativa:
 
  • 4. Ley distributiva de la conjunción respecto de la disyunción:
 
  • 5. Existe elemento complementario:
 
  • 6. Conjunción versus disyunción
 

Operación con bits

editar

La conjunción es utilizada a menudo para operaciones con bits. Por ejemplo:

  • Cero y cero:
 
  • Cero y uno:
 
  • Uno y cero:
 
  • Uno y uno:
 
  • Para cuatro bit:
 

Véase también

editar

Referencias

editar
  1. Richard Jhohnsonbaugh. Matemáticas discretas (6 edición). Pearson. p. 3. ISBN 970-26-0637-3.

Bibliografía

editar
  • Nachbin, Leopoldo (1986). Álgebra elemental. Rochester, Nueva York: Eva V. Chesnau. Edición de la OEA, traducida al español por César E. Silva.
  • Libros relacionados en formato PDF

Enlaces externos

editar