Abrir menú principal

Cota ajustada asintótica

En análisis de algoritmos una cota ajustada asintótica es una función que sirve de cota tanto superior como inferior de otra función cuando el argumento tiende a infinito. Usualmente se utiliza la notación Θ(g(x)) para referirse a las funciones acotadas por la función g(x).

Más formalmente se define:

f(x)=Θ(g(x)).

Una función f(x) pertenece a Θ(g(x)) cuando existen constantes positivas y tales que a partir de un valor f(x) se encuentra atrapada entre y . Quiere decir que las funciones f y g son iguales a partir de un valor dado salvo por una factor constante. Por tanto tiene sentido tomar a g como un representante de f.

A pesar de que Θ(g(x)) está definido como un conjunto, se acostumbra escribir f(x)=Θ(g(x)) en lugar de f(x)∈Θ(g(x)). Muchas veces también se habla de la función en lugar de h(x)=x² siempre que esté claro cual es el parámetro de la función dentro de la expresión. En la gráfica se da un ejemplo esquemático de cómo se comportan y con respecto a f(x) cuando x tiende a infinito.

La cota ajustada asintótica tiene relación con las cotas superior e inferior asintóticas (respectivamente las notaciones O y Ω):

EjemplosEditar

  • La función f(x) = x+10 puede ser acotada por la función g(x) = x. Para demostrarlo basta notar que para todo valor de x≥1 se cumple que g(x)≤f(x)≤11g(x), es decir x ≤ x+10 ≤ 11x . Por lo tanto x+10 = Θ(x).

Véase tambiénEditar

BibliografíaEditar

  • Introduction to Algorithms, Second Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein