DPANN es un supergrupo de arqueas de pequeño tamaño que al momento de su descubrimiento (2002), se observó que dado su tamaño se pueden medir en nanómetros (nm)[1]​ por lo que son un tipo de nanoorganismos y ocasionalmente se denominaron nanoarqueas.[2]​ DPANN constituye un clado al que se asigna usualmente la categoría de superfilo. Fue propuesto en 2013 por Rinke y colaboradores[3]​ para englobar a un grupo de arqueas relacionadas con las nanoarqueotas (las únicas cultivadas). DPANN es un acrónimo formado por las iniciales de los cinco primeros grupos descubiertos, Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota y Nanohaloarchaeota. El superfilo DPANN agrupa filos con una variedad de distribución ambiental y metabolismo, que van desde formas simbióticas y termófilas obligatorias como Nanoarchaeota, acidófilos como Parvarchaeota y no extremófilos como Aenigmarchaeota y Diapherotrites.

Symbol question.svg
 
DPANN
25K15pA9Def4sec Arman 4 Box1.png
Célula ARMAN encontrada en una mina de hierro
Taxonomía
Dominio: Archaea
Superfilo: DPANN
Rinke et al. 2013
Filos

CaracterísticasEditar

Se caracterizan por su pequeño tamaño (tamaño nanométrico), en consonancia con su pequeño genoma, por lo que tienen capacidades catabólicas limitadas pero suficientes como para llevar una vida libre, aunque muchas son episimbiontes que dependen de una asociación simbiótica o parasitaria con otros organismos. Muchas de sus características son similares o análogas a las que poseen las bacterias ultrapequeñas (grupo CPR).

Las capacidades metabólicas limitadas son producto del pequeño genoma y se refleja en que muchos carecen de vías biosintéticas centrales para nucleótidos, aminoácidos y lípidos; por lo que la mayoría de las arqueas DPANN, como por ejemplo las arqueas ARMAN, que dependen de otros microbios para cumplir con sus requisitos biológicos. Pero las que tienen el potencial de vivir libremente son heterótrofos aerobios y/o fermentativos.[4]

En su mayoría son anaerobias que no pueden cultivarse. Habitan en entornos extremos como termófilas, hiperacidófilas, hiperhalófilas o metaloresistentes; o también en el entorno templado de los sedimentos marinos y lacustres. Raramente se encuentran en el suelo o en océano abierto.[4]

ClasificaciónEditar

  • Diapherotrites. Encontradas mediante el análisis filogenético de los genomas recuperados de la filtración de aguas subterráneas de una mina de oro abandonada en EE. UU.[5][6]
  • Parvarchaeota y Micrarchaeota. Descubiertas en 2006 en aguas residuales fuertemente ácidas de una mina de EE.UU..[7][8][9]​ Son de muy pequeño tamaño y provisionalmente se las denominó ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganisms) y son simbiontes obligados de los Thermoplasmata.
  • Woesearchaeota y Pacearchaeota. Se han identificado tanto en sedimentos como en aguas superficiales de acuíferos y lagos, abundando especialmente en condiciones salinas.[10][11]
  • Aenigmarchaeota. Encontradas en las aguas residuales de minas y en sedimentos de fuentes termales.[12]
  • Nanohaloarchaeota. Distribuidas en ambientes de alta salinidad.[13]​ Son simbiontes obligados de las haloarqueas.
  • Nanoarchaeota. Fueron las primeras descubiertas (en 2002) en una fumarola oceánica próxima a la costa de Islandia. Viven como simbiontes obligados de las crenarqueas.[14][15][16]

FilogeniaEditar

Utilizando un algoritmo de máxima verosimilitud (RAxML con modelo PROTCATLG) basado en secuencias del genoma que contienen 14 proteínas ribosómicas (L2, L3, L4, L5, L6, L14, L15, L18, L22, L24, S3, S8 , S17 y S19), se ha obtenido el siguiente árbol:[4]

Archaea

Euryarchaeota

Proteoarchaeota

TACK

Asgard

DPANN 

Altiarchaeota

Diapherotrites

Micrarchaeota

Undinarchaeota

Aenigmarchaeota

Nanohaloarchaeota

Nanoarchaeota

Parvarchaeota

Mamarchaeota

Pacearchaeota

Woesearchaeota

Análisis filogenéticos han sugerido que DPANN como clado puede no ser monofilético y sería causado por la atracción de ramas largas.[17]​ Análisis filogenéticos sugirieron que DPANN pertenece a Euryarchaeota, estando el filo Nanohaloarchaeota totalmente separado del resto. El clado de DPANN sin Nanohaloarchaeota se ha nombrado "Micrarchaea".[18]​ Por esta razón una filogenia alternativa para DPANN es la siguiente:[19]

Archaea
Proteoarchaeota

TACK

Asgard

Euryarchaeota

Thermococci

Methanobacteria

Methanopyri

Methanococci

Thermoplasmata

Archaeoglobi

Methanomicrobia

"Nanohaloarchaeota"

Haloarchaea

"Altiarchaeota"

DPANN

Diapherotrites

Micrarchaeota

Undinarchaeota

Aenigmarchaeota

Nanoarchaeota

Parvarchaeota

Mamarchaeota

Pacearchaeota

Woesearchaeota

Otros autores en cambio propone que es posible que este acercamiento se ha debido a la transferencia horizontal de genes puesto que una parte importante de los filos son endosimbiontes de arqueas de mayor tamaño. Un ejemplo podría ser la colocación de Nanohaloarchaeota con sus huéspedes las haloarqueas. También es más probable que sea parafilético divergiendo primero Altiarchaeota, Micrarchaeota, Diapherotrites y posteriormente las demás nanoarqueas con las arqueas de mayor tamaño. No obstante la rápida evolución de estas arqueas tampoco se puede descartar, por tanto la relación entre las arqueas DPANN y las restantes permanecen sin resolverse.[20]

ReferenciasEditar

  1. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. (2002). «A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont.». Nature 417 (6884): 27 - 8. PMID 11986665.
  2. Brochier C. et al. 2005 Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 2005;6(5):R42. Epub 2005 Apr 14.
  3. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. F., ... & Dodsworth, J. A. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431-437.
  4. a b c Cindy J. Castelle & Jillian F. Banfield 2018, Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. PERSPECTIVE, VOL 172, Issue 6, P1181-1197, 2018, DOI:https://doi.org/10.1016/j.cell.2018.02.016
  5. Genomes Online Database
  6. Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF (2009) Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3:159–167.
  7. Baker, B. J., Tyson, G. W., Webb, R. I., et al.(2006) “Lineages of acidophilic archaea revealed by community genomic analysis,” Science, 314(5807):1933–1935.
  8. Murakami, S., Fujishima, K., Tomita, M., Kanai, A.(2012) Metatranscriptomic analysis of microbes in an ocean-front deep subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation. Applied and Environmental Microbiology 78(4):1015-22.
  9. B. J. Baker, L. R. Comolli, G. J. Dick, L. J. Hauser, D. Hyatt, B. D. Dill, M. L. Land, N. C. VerBerkmoes, R. L. Hettich, J. F. Banfield. Enigmatic, ultrasmall, uncultivated Archaea. Proceedings of the National Academy of Sciences (2010).
  10. Castelle, C. J., Wrighton, K. C., Thomas, B. C., Hug, L. A., Brown, C. T., Wilkins, M. J., ... & Taylor, R. C. (2015). Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Current Biology, 25(6), 690-701.
  11. Ortiz‐Alvarez, R., & Casamayor, E. O. (2016). High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high‐altitude lakes. Environmental microbiology reports.
  12. Takai, K., Moser, D. P., DeFlaun, M., Onstott, T. C. & Fredrickson, J. K. Archaeal diversity in waters fromdeep south african gold mines. Appl. Environ. Microbiol. 67, 5750–5760 (2001).
  13. Narasingarao, P. et al. (2012). "De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities". ISME J. 6 (1): 81–93.
  14. Waters, E., Hohn, M. J., Ahel, I., Graham, D. E., Adams, M. D., Barnstead, M., Beeson, K. Y., Bibbs, L., Bolanos, R., Keller, M., Kretz, K., Lin, X., Mathur, E., Ni, J., Podar, M., Richardson, T., Sutton, G. G., Simon, M., Soll, D., Stetter, K. O., Short, J. M., Noordewier, M. (2003).
  15. “The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism”. Proc Natl Acad Sci U S A 100 (22): 12984–8.
  16. Podar, M., Makarova, K. S., Graham, D. E., Wolf, Y. I., Koonin, E. V., Reysenbach, A. L. (2013). Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol. Direct 8:9
  17. Nina Dombrowski, Jun-Hoe Lee, Tom A Williams, Pierre Offre, Anja Spang (2019). Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. Nature.
  18. Thomas Cavalier-Smith & Ema E-Yung Chao (2020). Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Linkspringer.
  19. Jordan T. Bird, Brett J. Baker, Alexander J. Probst, Mircea Podar, Karen G. Lloyd (2017). Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales. Frontiers.
  20. Nina Dombrowski, Tom A. Williams, Jiarui Sun, Benjamin J. Woodcroft, Jun-Hoe Lee, Bui Quang Minh, Christian Rinke & Anja Spang (2020). Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nature.