Abrir menú principal

Distribución de Cantor

La distribución Cantor es la distribución de probabilidad cuya función de distribución acumulativa es la función de Cantor.

Esta distribución no tiene definida ni una función de densidad de probabilidad, ni una función de probabilidad, ya que no es continua absolutamente con respecto a la medida de Lebesgue, ni tiene tampoco masas puntuales. Por lo tanto, no es ni una discreta ni una distribución de probabilidad absolutamente continua, ni es una mezcla de estos tipos. Más bien es un ejemplo de una distribución singular.

Su función de distribución acumulada se refiere a veces como la escalera del diablo , aunque ese término tiene un significado más general.

CaracterizaciónEditar

El apoyo de la distribución de Cantor es el conjunto de Cantor , si la intersección de las (infinitamente contables) conjuntos

 

La distribución Cantor es la distribución de probabilidad único para el que para cualquier Ct (t ∈ { 0, 1, 2, 3, ... }), la probabilidad de un intervalo en particular en C que contiene el t-Cantor distribuye variable aleatoria es idénticamente 2 - t en cada uno de los intervalos de 2t.

MomentosEditar

Es fácil ver por simetría que para una variable aleatoria X que tiene esta distribución, su valor esperado E(X) = 1/2, y que todos los momentos centrales impares de X excepto el primer momento son 0.

La ley de varianza total se puede usar para encontrar la varianza var ( X ), como sigue. Para el conjunto C1, let Y = 0 si X ∈ [0,1/3], y 1 si X ∈ [2/3,1]. Entonces:

 

De esto obtenemos:

 

ReferenciasEditar