Diferencia entre revisiones de «Genoma»

29 621 bytes añadidos ,  hace 1 año
 
Aquí hay una tabla de algunos genomas significativos o representativos. Vea # Consulte también las listas de genomas secuenciados.
[[File:Genome size vs number of genes.svg|thumbnail|[[Log-log]] plot of the total number of annotated proteins in genomes submitted to [[GenBank]] as a function of genome size.<ref name="koonin2009">{{Cite book | publisher = FT Press | isbn = 978-0-13-254249-4 | last = Koonin | first = Eugene V. | title = The Logic of Chance: The Nature and Origin of Biological Evolution | date = 2011-08-31 }}</ref>]]
[[Genome size]] is the total number of DNA base pairs in one copy of a haploid genome. In humans, the nuclear genome comprises approximately 3.2 billion nucleotides of DNA, divided into 24 linear molecules, the shortest 50 000 000 nucleotides in length and the longest 260 000 000 nucleotides, each contained in a different chromosome.<ref>{{cite web|title=Human genome|url=http://www.whatisdna.net/wiki/genetic-genealogy-understanding-ancestry-dna/|access-date=19 August 2016}}</ref> The genome size is positively correlated with the morphological complexity among [[bacterial genome size|prokaryotes]] and lower [[eukaryotes]]; however, after mollusks and all the other higher eukaryotes above, this correlation is no longer effective.<ref name="Lewin 2004"/><ref>{{cite journal | vauthors = Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD | title = Eukaryotic genome size databases | journal = Nucleic Acids Research | volume = 35 | issue = Database issue | pages = D332-8 | date = January 2007 | pmid = 17090588 | doi = 10.1093/nar/gkl828 }}</ref> This phenomenon also indicates the mighty influence coming from repetitive DNA on the genomes.
 
Since genomes are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multi-cellular organisms (see [[Developmental biology]]). The work is both ''[[in vivo]]'' and ''[[in silico]]''.<ref>{{cite journal | vauthors = Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC | title = Essential genes of a minimal bacterium | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 2 | pages = 425–30 | date = January 2006 | pmid = 16407165 | pmc = 1324956 | doi = 10.1073/pnas.0510013103 | bibcode = 2006PNAS..103..425G }}
</ref><ref>{{cite journal | vauthors = Forster AC, Church GM | title = Towards synthesis of a minimal cell | journal = Molecular Systems Biology | volume = 2 | issue = 1 | pages = 45 | date = 2006 | pmid = 16924266 | pmc = 1681520 | doi = 10.1038/msb4100090 }}</ref>
 
Here is a table of some significant or representative genomes. See [[#See also]] for lists of sequenced genomes.
 
{| class="wikitable sortable"<!--Let's keep this table ordered by type and within that by size.-->
|-
!Organism type
!Organism
!colspan="2"|Genome size <br>([[base pair]]s)
!Approx. no. of genes
!class="unsortable"|Note
|-
|[[Virus]]
|[[Porcine circovirus]] type 1
|align="right"|1,759
|1.8kb
|
| Smallest viruses replicating autonomously in [[eukaryotic]] cells.<ref name=Equinexus>{{cite book |chapterurl=http://www.horizonpress.com/avir|author=Mankertz P|date=2008|chapter=Molecular Biology of Porcine Circoviruses|title=Animal Viruses: Molecular Biology|publisher=Caister Academic Press |isbn = 978-1-904455-22-6 }}</ref>
|-
|[[Virus]]
|[[Bacteriophage MS2]]
|align="right"|3,569
|3.5kb
|
| First sequenced RNA-genome<ref name=Fiers1976>{{cite journal | vauthors = Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M | title = Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene | journal = Nature | volume = 260 | issue = 5551 | pages = 500–7 | date = April 1976 | pmid = 1264203 | doi = 10.1038/260500a0 | bibcode = 1976Natur.260..500F }}</ref>
|-
|[[Virus]]
|[[SV40]]
|align="right"|5,224
|5.2kb
|
|<ref name=Fiers1978>{{cite journal | vauthors = Fiers W, Contreras R, Haegemann G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M | title = Complete nucleotide sequence of SV40 DNA | journal = Nature | volume = 273 | issue = 5658 | pages = 113–20 | date = May 1978 | pmid = 205802 | doi = 10.1038/273113a0 | bibcode = 1978Natur.273..113F }}</ref>
|-
|[[Virus]]
|[[Phi-X174 phage|Phage Φ-X174]]
|align="right"|5,386
|5.4kb
|
|First sequenced DNA-genome<ref name=Sanger1977>{{cite journal | vauthors = Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M | title = Nucleotide sequence of bacteriophage phi X174 DNA | journal = Nature | volume = 265 | issue = 5596 | pages = 687–95 | date = February 1977 | pmid = 870828 | doi = 10.1038/265687a0 | bibcode = 1977Natur.265..687S }}</ref>
|-
|[[Virus]]
|[[HIV]]
|align="right"|9,749
|9.7kb
|
|<ref>{{cite web|url=http://pathmicro.med.sc.edu/lecture/hiv9.htm |title=Virology – Human Immunodeficiency Virus And Aids, Structure: The Genome And Proteins Of HIV |publisher=Pathmicro.med.sc.edu |date=2010-07-01 |access-date=27 January 2011}}</ref>
|-
|[[Virus]]
|[[lambda phage|Phage λ]]
|align="right"|48,502
|48.5kb
|
|Often used as a vector for the cloning of recombinant DNA.
<ref>{{cite journal | vauthors = Thomason L, Court DL, Bubunenko M, Costantino N, Wilson H, Datta S, Oppenheim A | title = Recombineering: genetic engineering in bacteria using homologous recombination | journal = Current Protocols in Molecular Biology | volume = Chapter 1 | pages = Unit 1.16 | date = April 2007 | pmid = 18265390 | doi = 10.1002/0471142727.mb0116s78 | isbn = 978-0-471-14272-0 }}</ref>
<ref>{{cite journal | vauthors = Court DL, Oppenheim AB, Adhya SL | title = A new look at bacteriophage lambda genetic networks | journal = Journal of Bacteriology | volume = 189 | issue = 2 | pages = 298–304 | date = January 2007 | pmid = 17085553 | pmc = 1797383 | doi = 10.1128/JB.01215-06 }}</ref>
<ref>{{cite journal | vauthors = Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB | title = Nucleotide sequence of bacteriophage lambda DNA | journal = Journal of Molecular Biology | volume = 162 | issue = 4 | pages = 729–73 | date = December 1982 | pmid = 6221115 | doi = 10.1016/0022-2836(82)90546-0 }}</ref>
|-
|[[Virus]]
|[[Megavirus]]
|align="right"|1,259,197
|1.3Mb
|
|Until 2013 the largest known viral genome.<ref>{{cite journal | vauthors = Legendre M, Arslan D, Abergel C, Claverie JM | title = Genomics of Megavirus and the elusive fourth domain of Life | journal = Communicative & Integrative Biology | volume = 5 | issue = 1 | pages = 102–6 | date = January 2012 | pmid = 22482024 | pmc = 3291303 | doi = 10.4161/cib.18624 }}</ref>
|-
|[[Virus]]
|''[[Pandoravirus salinus]]''
| style="text-align:right;"|2,470,000
|2.47Mb
|
|Largest known viral genome.<ref>{{cite journal | vauthors = Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C | title = Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes | journal = Science | volume = 341 | issue = 6143 | pages = 281–6 | date = July 2013 | pmid = 23869018 | doi = 10.1126/science.1239181 | bibcode = 2013Sci...341..281P }}</ref>
|-
|[[Bacterium]]
|''[[Nasuia deltocephalinicola]]'' (strain NAS-ALF)
|align="right"|112,091
|112kb
|
|Smallest non-viral genome.<ref>{{cite journal | vauthors = Bennett GM, Moran NA | title = Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect | journal = Genome Biology and Evolution | volume = 5 | issue = 9 | pages = 1675–88 | date = 5 August 2013 | pmid = 23918810 | pmc = 3787670 | doi = 10.1093/gbe/evt118 }}</ref>
|-
|[[Bacterium]]
|''[[Carsonella ruddii]]''
|align="right"|159,662
|160kb
|
|
|-
|[[Bacterium]]
|''[[Buchnera aphidicola]]''
|align="right"|600,000
|600kb
|
|<ref>{{cite journal | vauthors = Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H | title = Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS | journal = Nature | volume = 407 | issue = 6800 | pages = 81–6 | date = September 2000 | pmid = 10993077 | doi = 10.1038/35024074 }}</ref>
|-
|[[Bacterium]]
|''[[Wigglesworthia glossinidia]]''
|align="right"|700,000
|700Kb
|
|
|-
|[[Bacterium]]
|''[[Haemophilus influenzae]]''
|align="right"| 1,830,000
|1.8Mb
|
|First genome of a living organism sequenced, July 1995<ref name=Fleichmann_1995>{{cite journal | vauthors = Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM | title = Whole-genome random sequencing and assembly of Haemophilus influenzae Rd | journal = Science | volume = 269 | issue = 5223 | pages = 496–512 | date = July 1995 | pmid = 7542800 | doi = 10.1126/science.7542800 | bibcode = 1995Sci...269..496F }}</ref>
|-
|[[Bacterium]]
|''[[Escherichia coli]]''
|align="right"|4,600,000
|4.6Mb
|4288
|<ref>{{cite journal | vauthors = Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y | display-authors = 6 | title = The complete genome sequence of Escherichia coli K-12 | journal = Science | volume = 277 | issue = 5331 | pages = 1453–62 | date = September 1997 | pmid = 9278503 | doi = 10.1126/science.277.5331.1453 }}</ref>
|-
|[[Bacterium]]
|''[[Solibacter usitatus]]'' (strain Ellin 6076)
|align="right"|9,970,000
|10Mb
|
|<ref>{{cite journal | vauthors = Challacombe JF, Eichorst SA, Hauser L, Land M, Xie G, Kuske CR | title = Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076 | journal = PLOS One | volume = 6 | issue = 9 | pages = e24882 | date = 15 September 2011 | pmid = 21949776 | pmc = 3174227 | doi = 10.1371/journal.pone.0024882 | editor1-last = Steinke | bibcode = 2011PLoSO...624882C | editor1-first = Dirk }}</ref>
|-
|[[Bacterium]] – [[cyanobacterium]]
|''[[Prochlorococcus]]'' spp. (1.7 Mb)
|align="right"|1,700,000
|1.7Mb
|1884
|Smallest known cyanobacterium genome<ref>
{{cite journal | vauthors = Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW | display-authors = 6 | title = Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation | journal = Nature | volume = 424 | issue = 6952 | pages = 1042–7 | date = August 2003 | pmid = 12917642 | doi = 10.1038/nature01947 | bibcode = 2003Natur.424.1042R }}</ref><ref>
{{cite journal | vauthors = Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI, Hess WR | display-authors = 6 | title = Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 100 | issue = 17 | pages = 10020–5 | date = August 2003 | pmid = 12917486 | pmc = 187748 | doi = 10.1073/pnas.1733211100 | bibcode = 2003PNAS..10010020D }}</ref>
|-
|[[Bacterium]] – cyanobacterium
|''[[Nostoc punctiforme]]''
|align="right"|9,000,000
|9Mb
|7432
|7432 [[open reading frame]]s<ref>
{{cite journal | vauthors = Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R | title = An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium | journal = Photosynthesis Research | volume = 70 | issue = 1 | pages = 85–106 | year = 2001 | pmid = 16228364 | doi = 10.1023/A:1013840025518 }}</ref>
|-
|[[Amoeboid]]
|''[[Polychaos dubium]]'' (''"Amoeba" dubia'')
|align="right"|670,000,000,000
|670Gb
|
|Largest known genome.<ref name=Parfrey2008>{{cite journal | vauthors = Parfrey LW, Lahr DJ, Katz LA | title = The dynamic nature of eukaryotic genomes | journal = Molecular Biology and Evolution | volume = 25 | issue = 4 | pages = 787–94 | date = April 2008 | pmid = 18258610 | pmc = 2933061 | doi = 10.1093/molbev/msn032 }}</ref> (Disputed)<ref name="ScienceShot: Biggest Genome Ever">[http://news.sciencemag.org/sciencenow/2010/10/scienceshot-biggest-genome-ever.html ScienceShot: Biggest Genome Ever] {{webarchive|url=https://web.archive.org/web/20101011155609/http://news.sciencemag.org/sciencenow/2010/10/scienceshot-biggest-genome-ever.html |date=11 October 2010 }}, comments: "The measurement for Amoeba dubia and other protozoa which have been reported to have very large genomes were made in the 1960s using a rough biochemical approach which is now considered to be an unreliable method for accurate genome size determinations."</ref>
|-
|[[Eukaryote|Eukaryotic]] [[organelle]]
|Human [[mitochondrion]]
|align="right"|16,569
|16.6kb
|
| <ref>{{cite journal | vauthors = Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG | title = Sequence and organization of the human mitochondrial genome | journal = Nature | volume = 290 | issue = 5806 | pages = 457–65 | date = April 1981 | pmid = 7219534 | doi = 10.1038/290457a0 | bibcode = 1981Natur.290..457A }}</ref>
|-
|[[Plant]]
|''[[Genlisea tuberosa]]''
|align="right"|61,000,000
|61Mb
|
|Smallest recorded [[flowering plant]] genome, 2014.<ref name="Fleischmann 2014">{{cite journal | vauthors = Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, Greilhuber J, Müller KF, Heubl G | title = Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms | journal = Annals of Botany | volume = 114 | issue = 8 | pages = 1651–63 | date = December 2014 | pmid = 25274549 | pmc = 4649684 | doi = 10.1093/aob/mcu189 | last-author-amp = yes }}</ref>
|-
|[[Plant]]
|''[[Arabidopsis thaliana]]''
|align="right"|135,000,000<ref>{{cite web | title = Genome Assembly | url = https://www.arabidopsis.org/portals/genAnnotation/gene_structural_annotation/agicomplete.jsp | work = The Arabidopsis Information Resource (TAIR) }}</ref>
|135 Mb
|27,655<ref>{{cite web|url=http://plants.ensembl.org/Arabidopsis_thaliana/Info/Annotation/|title=Details - Arabidopsis thaliana - Ensembl Genomes 40|author=|date=|website=plants.ensembl.org}}</ref>
|First plant genome sequenced, December 2000.<ref name="Greilhuber">{{cite journal | vauthors = Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W | title = Smallest angiosperm genomes found in lentibulariaceae, with chromosomes of bacterial size | journal = Plant Biology | volume = 8 | issue = 6 | pages = 770–7 | date = November 2006 | pmid = 17203433 | doi = 10.1055/s-2006-924101 | last-author-amp = yes }}</ref>
|-
|[[Plant]]
|''[[Populus|Populus trichocarpa]]''
|align="right"|480,000,000
|480Mb
|73013
|First tree genome sequenced, September 2006<ref>{{cite journal | vauthors = Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D | display-authors = 6 | title = The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) | journal = Science | volume = 313 | issue = 5793 | pages = 1596–604 | date = September 2006 | pmid = 16973872 | doi = 10.1126/science.1128691 | bibcode = 2006Sci...313.1596T }}</ref>
|-
|[[Plant]]
|''[[Fritillaria assyriaca]]''
|align="right"|130,000,000,000
|130Gb
|
|
|-
|[[Plant]]
|''[[Paris japonica]]'' (Japanese-native, pale-petal)
|align="right"|150,000,000,000
|150Gb
|
|Largest plant genome known<ref>{{cite journal | last1 = Pellicer | first1 = Jaume | last2 = Fay | first2 = Michael F. | last3 = Leitch | first3 = Ilia J. | name-list-format = vanc |title=The largest eukaryotic genome of them all?|journal=Botanical Journal of the Linnean Society|date=15 September 2010|volume=164|issue=1|pages=10–15|doi=10.1111/j.1095-8339.2010.01072.x}}</ref>
|-
|Plant – [[moss]]
|''[[Physcomitrella patens]]''
|align="right"|480,000,000
|480Mb
|
|First genome of a [[bryophyte]] sequenced, January 2008.<ref name="pmid18762443">{{cite journal | vauthors = Lang D, Zimmer AD, Rensing SA, Reski R | title = Exploring plant biodiversity: the Physcomitrella genome and beyond | journal = Trends in Plant Science | volume = 13 | issue = 10 | pages = 542–9 | date = October 2008 | pmid = 18762443 | doi = 10.1016/j.tplants.2008.07.002 }}</ref>
|-
|[[Fungus]] – [[yeast]]
|''[[Saccharomyces cerevisiae]]''
|align="right"|12,100,000
|12.1Mb
|6294
|First eukaryotic genome sequenced, 1996<ref>{{cite web|url=http://www.yeastgenome.org/ |title=Saccharomyces Genome Database |publisher=Yeastgenome.org |access-date=27 January 2011}}</ref>
|-
|[[Fungus]]
|''[[Aspergillus nidulans]]''
|align="right"|30,000,000
|30Mb
|9541
|<ref name = "Galagan_2005">{{cite journal | vauthors = Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW | display-authors = 6 | title = Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae | journal = Nature | volume = 438 | issue = 7071 | pages = 1105–15 | date = December 2005 | pmid = 16372000 | doi = 10.1038/nature04341 | bibcode = 2005Natur.438.1105G }}</ref>
|-
|[[Nematoda|Nematode]]
|''[[Pratylenchus coffeae]]''
|align="right"|20,000,000
|20Mb
|
|<ref>{{cite journal | vauthors = Leroy S, Bouamer S, Morand S, Fargette M | year = 2007 | title = Genome size of plant-parasitic nematodes | journal = Nematology | volume = 9 | issue = | pages = 449–450 | doi=10.1163/156854107781352089}}</ref> Smallest animal genome known<ref>{{cite web | vauthors = Gregory TR |date=2005 |title=Animal Genome Size Database |publisher= Gregory, T.R. (2016). Animal Genome Size Database. | url=http://www.genomesize.com/statistics.php?stats=entire#stats_top}}</ref>
|-
|[[Nematoda|Nematode]]
|''[[Caenorhabditis elegans]]''
|align="right"|100,300,000
|100Mb
|19000
|First multicellular animal genome sequenced, December 1998<ref>{{cite journal | author = The ''C. elegans'' Sequencing Consortium | title = Genome sequence of the nematode C. elegans: a platform for investigating biology | journal = Science | volume = 282 | issue = 5396 | pages = 2012–8 | date = December 1998 | pmid = 9851916 | doi = 10.1126/science.282.5396.2012 }}</ref>
|-
|[[Insect]]
|''[[Drosophila melanogaster]]'' (fruit fly)
|align="right"|175,000,000
|175Mb
|13600
|Size variation based on strain (175-180Mb; standard ''y w'' strain is 175Mb)<ref name="Adams_2000">{{cite journal | vauthors = Ellis LL, Huang W, Quinn AM, Ahuja A, Alfrejd B, Gomez FE, Hjelmen CE, Moore KL, Mackay TF, Johnston JS, Tarone AM | title = Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity | journal = PLoS Genetics | volume = 10 | issue = 7 | pages = e1004522 | date = July 2014 | pmid = 25057905 | pmc = 4109859 | doi = 10.1371/journal.pgen.1004522 }}</ref>
|-
|[[Insect]]
|''[[Apis mellifera]]'' (honey bee)
|align="right"|236,000,000
|236Mb
|10157
|<ref>{{cite journal | author = Honeybee Genome Sequencing Consortium | title = Insights into social insects from the genome of the honeybee Apis mellifera | journal = Nature | volume = 443 | issue = 7114 | pages = 931–49 | date = October 2006 | pmid = 17073008 | pmc = 2048586 | doi = 10.1038/nature05260 | bibcode = 2006Natur.443..931T }}</ref>
|-
|[[Insect]]
|''[[Bombyx mori]]'' (silk moth)
|align="right"|432,000,000
|432Mb
|14623
|14,623 predicted genes<ref name="Bombyxgenome">{{cite journal | vauthors = | title = The genome of a lepidopteran model insect, the silkworm Bombyx mori | journal = Insect Biochemistry and Molecular Biology | volume = 38 | issue = 12 | pages = 1036–45 | date = December 2008 | pmid = 19121390 | pmc = | doi = 10.1016/j.ibmb.2008.11.004 }}</ref>
|-
|[[Insect]]
|''[[Solenopsis invicta]]'' (fire ant)
|align="right"|480,000,000
|480Mb
|16569
|<ref name=Wurm_2011>{{cite journal | vauthors = Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, Ingram KK, Falquet L, Nipitwattanaphon M, Gotzek D, Dijkstra MB, Oettler J, Comtesse F, Shih CJ, Wu WJ, Yang CC, Thomas J, Beaudoing E, Pradervand S, Flegel V, Cook ED, Fabbretti R, Stockinger H, Long L, Farmerie WG, Oakey J, Boomsma JJ, Pamilo P, Yi SV, Heinze J, Goodisman MA, Farinelli L, Harshman K, Hulo N, Cerutti L, Xenarios I, Shoemaker D, Keller L | display-authors = 6 | title = The genome of the fire ant Solenopsis invicta | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 108 | issue = 14 | pages = 5679–84 | date = April 2011 | pmid = 21282665 | pmc = 3078418 | doi = 10.1073/pnas.1009690108 | bibcode = 2011PNAS..108.5679W }}</ref>
|-
|[[Mammal]]
|''[[Mus musculus]]''
|align="right"|2,700,000,000
|2.7Gb
|20210
|<ref>{{cite journal | vauthors = Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP | display-authors = 6 | title = Lineage-specific biology revealed by a finished genome assembly of the mouse | journal = PLoS Biology | volume = 7 | issue = 5 | pages = e1000112 | date = May 2009 | pmid = 19468303 | pmc = 2680341 | doi = 10.1371/journal.pbio.1000112 | editor1-last = Roberts | editor1-first = Richard J }}</ref>
|-
|[[Mammal]]
|''[[Homo sapiens]]''
|align="right"|3,289,000,000
|3.3Gb
|20000
|''Homo sapiens'' estimated genome size 3.2 billion bp<ref name="Homo sapien genome size">{{cite web|url=http://www.ornl.gov/sci/techresources/Human_Genome/faq/compgen.shtml#genomesize |title=Human Genome Project Information Site Has Been Updated |publisher=Ornl.gov |date=2013-07-23 |access-date=6 February 2014}}</ref>
Initial sequencing and analysis of the human genome<ref name="Analysis of human genome">{{cite journal | vauthors = Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X | display-authors = 6 | title = The sequence of the human genome | journal = Science | volume = 291 | issue = 5507 | pages = 1304–51 | date = February 2001 | pmid = 11181995 | pmc = | doi = 10.1126/science.1058040 | bibcode = 2001Sci...291.1304V | authorlink1 = Craig Venter }}</ref>
 
|-
|[[Mammal]]
|''[[Pan paniscus]]''
|align="right"|3,286,640,000
|3.3Gb
|20000
|Bonobo - estimated genome size 3.29 billion bp<ref name="Bonobo">{{cite web|url=https://www.ncbi.nlm.nih.gov/genome/10729 |title=Pan paniscus (pygmy chimpanzee) |publisher=nih.gov |access-date=30 June 2016 }}</ref>
|-
|[[Fish]]
|''[[Tetraodon nigroviridis]]'' (type of puffer fish)
|align="right"|385,000,000
|390Mb
|
|Smallest vertebrate genome known estimated to be 340 Mb<ref>{{cite journal | vauthors = Roest Crollius H, Jaillon O, Dasilva C, Ozouf-Costaz C, Fizames C, Fischer C, Bouneau L, Billault A, Quetier F, Saurin W, Bernot A, Weissenbach J | title = Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis | journal = Genome Research | volume = 10 | issue = 7 | pages = 939–49 | date = July 2000 | pmid = 10899143 | pmc = 310905 | doi = 10.1101/gr.10.7.939 }}</ref><ref>{{cite journal | vauthors = Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H | display-authors = 6 | title = Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype | journal = Nature | volume = 431 | issue = 7011 | pages = 946–57 | date = October 2004 | pmid = 15496914 | doi = 10.1038/nature03025 | bibcode = 2004Natur.431..946J }}</ref> – 385 Mb.<ref>{{cite web|title=Tetraodon Project Information|url=http://www.broadinstitute.org/annotation/tetraodon/background.html|access-date=17 October 2012|deadurl=yes|archive-url=https://web.archive.org/web/20120926160058/http://www.broadinstitute.org/annotation/tetraodon/background.html|archive-date=26 September 2012|df=dmy-all}}</ref>
|-
|[[Fish]]
|''[[Protopterus aethiopicus]]'' (marbled lungfish)
|align="right"|130,000,000,000
|130Gb
|
|Largest vertebrate genome known
|}
 
== Complejidad del genoma ==
12 572

ediciones