121 932
ediciones
m (→Ver también) |
|||
*Richtmyer, Robert D. (1978): ''Principles of advanced mathematical physics'', Springer-Verlag, New York, ISBN 0-387-08873-3.
==Ver también==▼
*[[Teorema de descomposición espectral]]▼
*[[Hamiltoniano (mecánica cuántica)]]▼
[[Categoría:Física matemática]]▼
[[Categoría:Análisis funcional]]▼
<!--
The converse is true if one introduces the additional assumption that ''T'' is closed. By the [[closed graph theorem]], if ''T - λ'': ''D'' → ''X'' is bijective, then its (algebraic) inverse map is necessarily a bounded operator. (Notice the completeness of ''X'' is required in invoking the closed graph theorem.) Therefore, in contrast to the bounded case, the condition that a complex number ''λ'' lie in the spectrum of ''T'' becomes a purely algebraic one: for a closed <math>T</math>, <math>\lambda</math> is in the spectrum of <math>T</math> if and only if <math>T-\lambda</math> is not bijective.
-->
==Referencias==
{{reflist}}
==
*Dales et al, ''Introduction to Banach Algebras, Operators, and Harmonic Analysis'', ISBN 0-521-53584-0.▼
*Richtmyer, Robert D. (1978): ''Principles of advanced mathematical physics'', Springer-Verlag, New York, ISBN 0-387-08873-3.
▲==Ver también==
*[[Decomposition of spectrum (functional analysis)]]▼
▲*[[Teorema de descomposición espectral]], [[espectro esencial]].
▲*[[operador autoadjunto]], [[Hamiltoniano (mecánica cuántica)]].
▲[[Categoría:Física matemática]]
▲[[Categoría:Análisis funcional]]
▲*Dales et al, ''Introduction to Banach Algebras, Operators, and Harmonic Analysis'', ISBN 0-521-53584-0
[[de:Spektrum (Operatortheorie)]]
[[it:Spettro (matematica)]]
[[he:ספקטרום (מתמטיקה)]]
|