Diferencia entre revisiones de «Ruido de Johnson-Nyquist»

5228 bytes eliminados ,  hace 11 años
Propuesta de fusión en Ruido de Johnson-Nyquist
(La versión original de este artículo, creada hoy, es una traducción incompleta de en:Johnson–Nyquist noise; versión http://en.wikipedia.org/w/index.php?&oldid=297595486)
(Propuesta de fusión en Ruido de Johnson-Nyquist)
{{fusionar desdeen|Ruido térmicode Johnson-Nyquist}}
ElEn '''ruido[[telecomunicaciones]] dey Johnson–Nyquist'''otros sistemas electrónicos, se denomina ('''ruido térmico''', o '''ruido de Johnson''', oal '''[[Ruido (física)|ruido]] deproducido Nyquist''')por seel generamovimiento porde lalos agitación[[electrón|electrones]] térmicaen los elementos integrantes de los portadorescircuitos, tales como conductores, semiconductores, tubos de cargavacío, (generalmenteetc. [[electron]]esSe dentrotrata de un [[conductorruido blanco]]), enes equilibriodecir, louniformemente quedistribuido sucedeen coel independenciaespectro delde [[voltajefrecuencia]] aplicados.
 
La [[densidad espectral de potencia de ruido, expresada en [[vatio|W]]/[[Hz]], viene dada por:
El ruido térmico es aproximadamente [[Ruido_blanco|blanco]], lo que significa que su [[densidad espectral de potencia]] es casi
plana. Además, la amplitud de la señal sigue una distribución [[Distribución_normal|gaussiana]].<ref>{{cite web | url = http://focus.ti.com/lit/an/slod006b/slod006b.pdf | title = Op Amps For Everyone | accessdate = 2006-12-06 | last = Mancini | first = Ron | coauthors = others | year = 2002 | month = August | format = [[Portable Document Format|PDF]] | work = Application Notes | publisher = [[Texas Instruments]] | pages = [http://focus.ti.com/lit/an/slod006b/slod006b.pdf#page=148 p. 148]
| quote = Thermal noise and shot noise (see below) have Gaussian probability density functions. The other forms of noise do not.}}</ref>
 
:<math>n_0 = k \cdot T </math>
== Historia ==
 
donde:
Este tipo de ruido fue medido por primera vez por [[John B. Johnson]] en 1928 en los [[Bell Labs]].<ref>J. Johnson, [http://link.aps.org/abstract/PR/v32/p97 "Thermal Agitation of Electricity in Conductors"], Phys. Rev. 32, 97 (1928) – the experiment</ref> . Comunicó su hallazgo a su compañero [[Harry Nyquist]], que elaboró la explicación técnica del fenómeno.<ref>H. Nyquist, [http://link.aps.org/abstract/PR/v32/p110 "Thermal Agitation of Electric Charge in Conductors"], Phys. Rev. 32, 110 (1928) – the theory</ref>
*k = [[Constante de Boltzmann]]
*T = Temperatura en [[Kelvin]]
 
== Ruido de tensión y potencia ==
 
El ruido térmico es diferente del [[Ruido_de_disparo | ruido de disparo]], que tiene lugar cuando el número finito de [[electrones]] es suficientemente pequeño para dar lugar a la aparición de fluctuaciones estadísticas apreciables en una medición. La definición de ruido de Johnson-Nyquist aplica a cualquier tipo de medio conductor. Puede modelarse como una fuente de tensión que representa el ruido de una [[resistencia_eléctrica | resistencia]] no ideal en serie con una [[resistencia_eléctrica | resistencia]] libre de ruido.
 
La [[densidad espectral de potencia]] viene dada por:
 
:<math>
\bar {v_{n}^2} = 4 k_B T R
</math>
 
donde ''k<sub>B</sub>'' es la [[Constante_de_Boltzmann | constante de Boltzmann]] en [[Julio_(unidad) | julios]] por [[kelvin]], ''T'' es la temperatura de la resistencia enkelvins, y ''R'' su valor en [[Ohmio]]s (Ω).
La siguiente ecuación proporciona un cálculo rápido:
:<math>
\sqrt{\bar {v_{n}^2}} = 0.13 \sqrt{R} ~\mathrm{nV}/\sqrt{\mathrm{Hz}}</math>.
 
Por ejemplo, una resistencia de 1&nbsp;kΩ a 300&nbsp;K tiene
 
:<math>
\sqrt{\bar {v_{n}^2}} = \sqrt{4 \cdot 1.38 \cdot 10^{-23}~\mathrm{J}/\mathrm{K} \cdot 300~\mathrm{K} \cdot 1~\mathrm{k}\Omega} = 4.07 ~\mathrm{nV}/\sqrt{\mathrm{Hz}}</math>.
 
Para un acnho de banda dado, el [[Valor_cuadrático_medio | valor cuadrético medio]] (RMS) de la tensión, <math>v_{n}</math>, vale
 
:<math>
v_{n} = \sqrt{\bar {v_{n}^2}}\sqrt{\Delta f } = \sqrt{ 4 k_B T R \Delta f }
</math>
 
donde Δ''f'' es el ancho de banda sobre el que se mide el ruido. Para una resistencia de 1&nbsp;kΩ a temperatura ambiente y10&nbsp;kHz de ancho de banda, el valor cuadrático medio de la tensión de ruido en 400&nbsp;nV.<ref>[http://www.google.com/search?q=sqrt%284*k*295+K*1+kiloohm*%2810+kHz%29%29+in+microvolt Google Calculator result] for 1&nbsp;kΩ room temperature 10&nbsp;kHz bandwidth</ref> Una regla sencilla para recordar es que 50Ω sobre un ancho de banda de 1Hz corresponden a 1nV a temperatura ambiente.
 
Una resistencia en cortocircuito, disipa una potencia de ruido:
:<math>
P = \bar{v_{n}^2}/R = 4 k_B \,T \Delta f
</math>
 
El ruido generado en la resistencia puede transferirse al resto del circuito, siendo máximo el valor de transferencia
cuando la impedacia del [[Teorema_de_Thévenin | equivalente de Thévenin]] de éste iguala el valor de la resistencia.
En esta caso, cada una de las dos resistencias disipa ruido tanto sobre sí misma como sobre la otra. Puesto que solo la mitad de la tensión de ruido cae en cada una de ellas, la potencia de ruido resultante es:
 
:<math>
P = k_B \,T \Delta f
</math>
 
sonde ''P'' es la potencia del ruido térmico en [[watio]]s. Nótese que es independiente del valor de la resistencia.
 
== Ruido en decibelios ==
 
En [[Telecomunicacion|telecomunicaciones]], la potencia se suele expresar en [[decibelio]]s relativos a 1 miliwatio ([[dBm]]), suponiendo una carga de 50 ohmios. Bajo estas condiciones, a temperatura ambiente el ruido vale:
 
:<math>
P_\mathrm{dBm} = -174 + 10\ \log(\Delta f)
</math>
 
donde P viene expreseda en [[dBm]]. Por ejemplo:
 
::{| class="wikitable"
! Ancho de banda !! Potencia !! Notas
|-
| 1 Hz || −174 dBm ||
|-
| 10 Hz || −164 dBm
|-
| 1000 Hz || −144 dBm
|-
| 10 kHz || −134 dBm || canal de walkie-talkie
|-
| 1 MHz || −114 dBm
|-
| 2 MHz || −111 dBm || Canal GPS
|-
| 6 MHz || −106 dBm || Televisión analógica
|-
| 20 MHz || −101 dBm || WLAN 802.11
|}
 
==Referencias==
<references/>
 
== Enlaces externos ==
*[http://www4.tpgi.com.au/users/ldbutler/AmpNoise.htm Amplifier noise in RF systems]
*[http://www.physics.utoronto.ca/~phy225h/experiments/thermal-noise/Thermal-Noise.pdf Thermal noise (undergraduate) with detailed math]
*[http://www.sengpielaudio.com/calculator-noise.htm Johnson-Nyquist noise or thermal noise calculator — volts and dB]
*[http://www.licha.de/astro_article_ccd_bias_dark.php Thoughts about Image Calibration for low dark current and Amateur CCD Cameras to increase Signal-To-Noise Ratio]
*[http://www.phys.sci.kobe-u.ac.jp/~sonoda/notes/nyquist_random.ps Derivation of the Nyquist relation using a random electric field, H. Sonoda]
 
[[Categoría:Procesado de señales]]
[[Categoría:Ruido]]
 
[[en:Johnson–Nyquist noise]]
[[fr:Bruit thermique]]
[[he:רעש ג'ונסון]]
[[it:Rumore termico]]
[[ja:熱雑音]]
[[he:רעש ג'ונסון]]
[[nl:Thermische ruis]]
[[ja:熱雑音]]
[[pl:Szum termiczny]]
[[pt:Ruído térmico]]
72 862

ediciones