Diferencia entre revisiones de «Principio de acción»

10 bytes eliminados ,  hace 11 años
m
BOT - Posible vandalismo de 190.50.33.87, revirtiendo hasta la edición 26427148 de StarBOT. ¿Hubo un error?
m (BOT - Posible vandalismo de 190.50.33.87, revirtiendo hasta la edición 26427148 de StarBOT. ¿Hubo un error?)
En mecánica lagrangiana, la trayectoria de un objeto es derivada encontrando la trayectoria para la cual la integral de acción ''S'' es estacionaria (un mínimo o un punto de ensilladura). La integral de acción es una funcional (una función dependiendo de una función, en este caso <math>q(t)</math>).
 
Para un sistema con fuerzas conservativas (fuerzas que se pueden describir en términos de un potencial, como la fuerza gravitacional y no como las fuerzas de fricción), la elección de un lagrangiano como la [[energía cinética]] menos la [[energía potencial]] da lugar a las leyes correctas de la mecánica de Newton (notar que la ''suma'' de la energía cinética y la potencial es la energía total del sistema)sos un mono.
 
== Las ecuaciones de Euler-Lagrange para la integral de acción en una dimensión ==
595 099

ediciones