Diferencia entre revisiones de «Transformación afín»

Contenido eliminado Contenido añadido
Sin resumen de edición
Línea 25:
</math>
||left}}
O en forma más compacta:
Donde:
{{ecuación|
 
<math> \vec{y} = A \vec{x} + \vec{b}. \mapsto
 
<!--
==Representation==
The technique requires that all vectors are augmented with a "1" at the end, and all matrices are augmented with an extra row of zeros at the bottom, an extra column—the translation vector—to the right, and a "1" in the lower right corner. If ''A'' is a matrix,
 
:<math>
\begin{bmatrix} \vec{y} \\ 1 \end{bmatrix} = \begin{bmatrix} A & \vec{b} \ \\ 0, \ldots, 0 & 1 \end{bmatrix} \begin{bmatrix} \vec{x} \\ 1 \end{bmatrix}
</math>
||left}}
Esta representación permite ver rápidamente que el conjunto de todas las transformaciones afines [[función inversa|invertibles]] es el producto semidirecto <math>\scripstyle \mathbb{K}\oplus \text{GL}(n,\mathbb{K})</math>, el grupo anterior bajo las operación de composición de transformaciones es un grupo llamado, [[grupo afín]] de orden ''n''. Como puede verse este grupo es un subgrupo de <math>\scripstyle \text{GL}(n+1,\mathbb{K})</math>
 
<!--
is equivalent to the following
===Coordenadas homogéneas===
 
:<math>
\vec{y} = A \vec{x} + \vec{b}.
</math>
 
This representation exhibits the set of all [[Inverse function|invertible]] affine transformations as the [[semidirect product]] of ''K''<sup>''n''</sup> and GL(''n'', ''k''). This is a [[group (mathematics)|group]] under the operation of composition of functions, called the [[affine group]].
 
Ordinary matrix-vector multiplication always maps the origin to the origin, and could therefore never represent a translation, in which the origin must necessarily be mapped to some other point. By appending a "1" to every vector, one essentially considers the space to be mapped as a subset of a space with an additional dimension. In that space, the original space occupies the subset in which the final index is 1. Thus the origin of the original space can be found at (0,0, ... 0, 1). A translation within the original space by means of a linear transformation of the higher-dimensional space is then possible (specifically, a shear transformation). This is an example of [[homogeneous coordinates]].
 
The advantage of using homogeneous coordinates is that one can combine any number of affine transformations into one by multiplying the matrices. This device is used extensively by graphics software.
-->
== Propiedades ==
Una transformación es invertibles [[sí y sólo sí]] <math>\scriptstyle \mathbf{A}</math> es invertible. En la representación matricial descrita anteriormente, la inversa tiene la forma:
{{ecuación|
<math> \begin{bmatrix} A^{-1} & -A^{-1}\vec{b} \ \\ 0,\ldots,0 & 1 \end{bmatrix} </math>
||left}}
Las tranformaciones afines invertibles (de un espacio afín en sí mismo) forman el llamado grupo afín que como se ha mencionado tiene al [[grupo lineal]] de orden ''n'' como subgrupo. El propio grupo afín de orden ''n'' es a su vez subgrupo del grupo lineal de orden ''n''+1.
 
<!--
==Properties==
An affine transformation is [[invertible]] [[if and only if]] ''A'' is invertible. In the matrix representation, the inverse is:
 
:<math>
\begin{bmatrix} A^{-1} & -A^{-1}\vec{b} \ \\ 0,\ldots,0 & 1 \end{bmatrix}
</math>
 
The invertible affine transformations (of an affine space onto itself) form the [[affine group]], which has the [[general linear group]] of degree ''n'' as subgroup and is itself a subgroup of the general linear group of degree ''n'' + 1.
 
The [[Similar matrix|similarity transformations]] form the subgroup where ''A'' is a scalar times an [[orthogonal matrix]]. If and only if the [[determinant]] of ''A'' is 1 or −1 then the transformation preserves area; these also form a subgroup. Combining both conditions we have the [[isometry|isometries]], the subgroup of both where ''A'' is an orthogonal matrix.