Diferencia entre revisiones de «Fibración de Hopf»

14 bytes añadidos ,  hace 9 años
sin resumen de edición
Sin resumen de edición
Sin resumen de edición
[[Stereographic projection]] of the Hopf fibration induces a remarkable structure on '''R'''<sup>3</sup>, in which space is filled with nested [[torus|tori]] made of linking [[Villarceau circles]]. Here each fiber projects to a [[circle]] in space (one of which is a line, thought of as a "circle through infinity"). Each torus is the stereographic projection of the [[inverse image]] of a circle of latitude of the 2-sphere. (Topologically, a torus is the product of two circles.) These tori are illustrated in the images at right. When '''R'''<sup>3</sup> is compressed to a ball, some geometric structure is lost although the topological structure is retained (see [[Geometry#Topology_and_geometry|Topology and Geometry]]). The loops are [[homeomorphic]] to circles, although they are not geometric [[circle]]s.
-->
Existen numerosas generalizaciones de la fibración de Hopf. La esfera unidad en '''C'''<sup>''n''+1</sup> se fibra naturalmente en '''CP'''<sup>''n''</sup> with circles as fibers, existen también versiones de estas fibraciones [[número real|reales]], [[quaternionquaternión]]icas, y [[octonionoctonión]]icas. En particular, lafibraciónn de Hopf corresponde a una familia de cuatro haces de fibras en los cuales el espacio total, el espacio base, y el espacio fibra son todos esferas:
:<math>S^0\hookrightarrow S^1 \rightarrow S^1, \,\!</math>
:<math>S^1\hookrightarrow S^3 \rightarrow S^2, \,\!</math>
:<math>S^3\hookrightarrow S^7 \rightarrow S^4,\,\!</math>
:<math>S^7\hookrightarrow S^{15}\rightarrow S^8. \,\!</math>
Según establece el [[teorema de Adams]] suchestas fibrationsfibraciones cansolo occurpueden onlypresentarse inen theseestas dimensionsdimensiones.
 
La fibración de Hopf es importante en el ámbito de la [[teoría de twistores]].
130 871

ediciones