Diferencia entre revisiones de «Espacio compacto»

3 bytes añadidos ,  hace 5 años
m ((Bot) Normalización de fechas)
Por el [[teorema de Heine-Borel]], un espacio métrico es compacto si y sólo si es [[espacio completo|completo]] y [[totalmente acotado]]. Para subconjuntos del espacio euclídeo, basta con que éste sea [[Sistema cerrado|cerrado]] y [[acotado]], que es una caracterización útil.
 
Sin embargo, en dimensión infinita, esto no es verdad, y, de hecho, en este contexto la bola unitaria cerrada jamás será compactaprecompacta; por lo mismo, es mucho más difícil verificar compacidad.
 
=== Teorema de Arzelá-Ascoli ===
Usuario anónimo