Diferencia entre revisiones de «Espacio compacto»

2 bytes añadidos ,  hace 4 años
m
error corregido
m (error corregido)
===Ejemplos===
* El conjunto ''K'' = {1, 1/2, 1/3, 1/4,..., 0} ⊆ '''R''' con la topología heredada de la estándar de '''R''' es compacto. Dado un [[entorno (topología)|entorno]] de 0, este incluye a todos los 1/''n'' salvo un número finito —puesto que la sucesión {1/''n''}<sub>''n'' ∈ '''N'''</sub> [[convergencia (matemáticas)|converge]] a 0—. Por tanto, dado un recubrimiento abierto de ''K'', tomando un abierto ''O'' que contenga a 0, y un abierto que contenga cada punto 1/''n'' no contenido en ''O'', esta subcolección finita cubre a ''K''.
* El [[intervalo abierto]] (0, 1) ⊆ '''R''' no es compacto (con la topología usual heredada de '''R'''). La familia { (0, 1 − 1/''n'') }<sub>''n'' > 1</sub> es un recubrimiento abierto del intervalo, pero dada cualquier subfamilia finita, existe un intervalo (0, 1 − 1/''k'') en ella que contiene a los demás —buscando aquel con ''k'' mínimo—máximo—. Como 1 − 1/''p'' no está en (0, 1 − 1/''k'') si ''p'' > ''k'', ninguna subfamilia finita cubre (0, 1).
 
=== Caracterizaciones equivalentes ===
357

ediciones