Normalizador

En teoría de grupos, el normalizador de un subconjunto S de un grupo G es el mayor subgrupo de G para el cual la acción de conjugación deja invariante a S. Cuando el conjunto consta de un solo elemento, se habla entonces de un centralizador.

DefiniciónEditar

Si G es un grupo y S un subconjunto de G, el normalizador de S está definido por

 

En donde   es el conjunto definido como  .

En particular, si S es un subgrupo de G, entonces N(S) es el mayor subgrupo de G en el cual S es un subgrupo normal.

PropiedadesEditar

El resultado más importante es que el normalizador de un subconjunto siempre es un subgrupo.

Si G es un grupo y S un subconjunto de G, entonces el normalizador N(S) es un subgrupo de G.

Demostración
Para demostrar que es un subgrupo, basta con tomar dos elementos   y verificar que   también lo está, esto es, habría que demostrar que para todo   el elemento   también pertenece a S.

Primero demostramos que si   entonces   ya que para cualquier   existe un   que satisfaga  , pero entonces  , es decir,  

Procedemos ahora a la prueba principal. Desarrollando

 

observamos que a está conjugando al elemento  , el cual a su vez es la conjugación por   de s.

Pero como  , entonces   y por tanto  . Denotemos por   a   y entonces la expresión original se reescribe como   que, al estar a en  , también pertenece a S.

Concluimos entonces que   y por tanto   es un subgrupo.

Un caso de particular interés es cuando el subconjunto es al mismo tiempo un subgrupo.

Si H es un subgrupo de G, entonces H es un subgrupo normal de N(H). Además, N(H) es el mayor subgrupo con esta propiedad.

Demostración
Si H es un subgrupo de G, entonces el normalizador es precisamente el conjunto de todos los elementos g del grupo para los cuales  , que es precisamente la condición que define a un subgrupo normal.

Como consecuencia del teorema anterior, un subgrupo H de G es normal en G si y sólo si N(H) = G.

Si H es un subgrupo de G entonces el número de clases conjugadas de H en G es igual al índice del normalizador en el grupo:   y por tanto divide al orden del grupo cuando éste es finito.

Además, dos clases de conjugación coinciden,  , si y sólo si  

  • Según Lang, se consideran estas dos más:
  • Si K es un subgrupo del normalizador N(H), KH es un grupo y H es normal en KH.
  • El normalizador de H es el mayor subgrupo de G en el que H es normal.

EjemplosEditar

  • El normalizador de cualquier subgrupo normal es el grupo completo. En particular N(<e>) y N(G) son ambos iguales a G.
  • El subgrupo H de   generado por el ciclo   no es normal, por tanto su normalizador no es el grupo completo de permutaciones. En este caso, el normalizador de H es el subgrupo generado por las permutaciones  .

ReferenciasEditar

BibliografíaEditar

  • Baumslag, B.; Chandler, B.: Teoría de grupos (1972), Mc Graw-Hill de México, impreso en Colombia.
  • Zaldívar, Felipe: Introducción a la teoría de grupos (2009), Sociedad Matemática Mexicana-Reverté ediciones.
  • Lang, Serge: Álgebra (1973), Aguilar, Madrid, primera reimpresión.