Nueve

número natural

El nueve (9) es el número natural que sigue al 8 y precede al 10.

9
Cardinal Nueve
Ordinal Noveno, -a
Nono, -a
Factorización
Sistemas de numeración
Romana IX
Ática ΠΙΙΙΙ
Jónica θ
China
China tradicional
Egipcia IIIIIIIII
Armenia Թ
Maya Maya 9.svg
Cirílica Ѳ
De los Campos de Urnas ////\
India
Sistema binario 1001
Sistema octal 11
Sistema hexadecimal 9
Como parámetro de una función
Función φ de Euler 3
Función divisor 3
Función de Möbius 0
Función de Mertens -2
ocho 9 diez
Lista de números
Una señal con el número nueve en una calle.

MatemáticasEditar

Raíz digital de un númeroEditar

Si sumamos todas las cifras de un número, y luego todas las cifras de la suma, y continuamos hasta lograr un número de una sola cifra, obtenemos la raíz digital del número inicial.

Lógicamente, cualquier número natural que contenga uno o más nueves como una de sus cifras, la suma de sus cifras (y, si es necesario, las del número resultante de la suma, hasta que el resultado sea un número de una cifra) dará un resultado idéntico a la adición de las mismas cifras si el número nueve no estuviere presente.

Ejemplo: 19 => 1 + 9 = 10 => 1 + 0 = 1

Sucede igual, si el número contiene más nueves:

En el número natural 123456789, la suma de las cifras constituyentes añadidas individualmente será idéntica a la suma de los dígitos en el número 12345678; porque 1 + 2 + 3 +…+ 8 + 9 = 45, y 4 + 5 = 9 da el mismo resultado que 1 + 2 + 3 +…+ 7 + 8 = 36, y 3 + 6 = 9

Esta propiedad es utilizada para comprobar la certeza del resultado en multiplicaciones y divisiones, mediante la prueba del nueve.


En la base 10, un número positivo es divisible por 9 si y solo si su raíz digital es 9.  Es decir, si cualquier número natural se multiplica por 9, y los dígitos de la respuesta se agregan repetidamente hasta que sea solo un dígito , la suma será nueve:

  • 2 × 9 = 18 (1 + 8 = 9)
  • 3 × 9 = 27 (2 + 7 = 9)
  • 9 × 9 = 81 (8 + 1 = 9)

CienciaEditar

Referencias y notasEditar

  1. G. N. Berman Un paseo por la teoría de los números Editorial URSS, Moscú 2007
  2. «Secuencia A029708 en OEIS».