Par ordenado

pares de objetos matemáticos

En matemáticas, un par ordenado es una pareja de objetos matemáticos, en la que se distingue un elemento y otro. El par ordenado cuyo primer elemento es y cuyo segundo elemento es se denota como .

Ejemplos de ocho puntos localizados en el plano cartesiano mediante pares ordenados

Un par ordenado no es el conjunto que contiene a los elementos y , denotado por . Un conjunto está definido únicamente por sus elementos, mientras que en un par ordenado el orden de estos es también parte de su definición. Por ejemplo, los conjuntos y son idénticos, pero los pares ordenados y son distintos.

Los pares ordenados también se denominan tuplas o vectores dimensionales. La noción de una colección finita de objetos ordenada puede generalizarse a más de dos objetos, dando lugar al concepto de n-tupla.

El producto cartesiano de conjuntos, las relaciones binarias, las coordenadas cartesianas, las fracciones y las funciones se definen en términos de pares ordenados.

Definición

editar

La propiedad característica que define un par ordenado es la condición para que dos de ellos sean idénticos:

Dos pares ordenados (a, b) y (c, d) son idénticos si y solo si coinciden sus primer y segundo elemento respectivamente:

 

Los elementos de un par ordenado también se denominan componentes.

Producto cartesiano

editar

Dados dos conjuntos X e Y, la colección de todos los pares ordenados (x, y), formados con un primer elemento en X y un segundo elemento en Y, se denomina el producto cartesiano de X e Y, y se denota X × Y. El producto cartesiano de conjuntos permite definir relaciones y funciones.

Generalizaciones

editar

Es habitual trabajar con colecciones ordenadas de más de dos objetos, sin más que extender la definición del par ordenado. Por ejemplo, un trío ordenado o terna ordenada es una terna de objetos matemáticos en la que se distinguen un primer, segundo y tercer elemento. La propiedad principal de un trío ordenado es entonces:

 

En general se puede adoptar una definición similar para un número cualquiera de elementos n, dando lugar así a una n-tupla.

Definición conjuntista

editar

La condición de igualdad entre pares ordenados es su única propiedad matemática relevante.[1]​ Sin embargo, en teoría de conjuntos se construyen todos los objetos matemáticos a partir de conjuntos: números, funciones, etc. En este contexto, se define par ordenado como un conjunto particular de tal manera que su relación de igualdad sea la correcta.

La definición conjuntista habitual, debida a Kuratowski, es:[2]

 

Mediante el axioma de extensionalidad y el axioma del par puede demostrarse que este término define un conjunto, con la propiedad característica del par ordenado .[3]

Esquemas sustitutivos

editar

La definición conjuntista de Kuratowski no es la única existente en la literatura matemática:

Véase también

editar

Referencias

editar
  1. Véase por ejemplo Moschovakis, 2006, p. 35, donde se afirma que
    Adoptamos ahora una operación (x, y) concreta específica [...] quizás el par de Kuratowski [...] quizá alguna otra: a partir de aquí podemos olvidarnos de la definición concreta elegida, lo único que importa es que la operación "par" satisface [las propiedades básicas de los pares ordenados].
  2. a b Introducción de Wiener, 1967
  3. Moschovakis, 2006, p. 35.
  4. Wiener, 1967

Bibliografía

editar

Bibliografía

editar