Coordenadas esféricas

(Redirigido desde «Sistema de coordenadas esfericas»)

El sistema de coordenadas esféricas se basa en la misma idea que las coordenadas polares y se utiliza para determinar la posición espacial de un punto mediante una distancia y dos ángulos. En consecuencia, un punto P queda representado por un conjunto de tres magnitudes: el radio , el ángulo polar o colatitud y el azimutal .

Elementos de las coordenadas esféricas

Algunos autores utilizan la latitud, en lugar de colatitud, en cuyo caso su margen es de -90° a 90° (de -π/2 a π/2 radianes), siendo el cero el plano XY. También puede variar la medida del azimutal, según se mida el ángulo en sentido reloj o contrarreloj, y de 0° a 360° (0 a 2π en radianes) o de -180° a +180° (-π a π).

Se debe tener en cuenta qué convención utiliza un autor determinado.

Convenios utilizados editar

Convenio internacional editar

 

La mayoría de los físicos, ingenieros y matemáticos no norteamericanos escriben:

  •  , el azimutal  : de 0° a 360°
  •  , la colatitud : de 0° a 180°

Esta es la convención que se sigue en este artículo. En el sistema internacional, los rangos de variación de las tres coordenadas son:

 

La coordenada radial es siempre positiva. Si reduciendo el valor de   llega a alcanzarse el valor 0, a partir de ahí,   vuelve a aumentar, pero   pasa a valer π-  y   aumenta o disminuye en π radianes. TRP

Convenio estadounidense editar

Actualmente, el convenio usado en los EE. UU. no es el mismo que el europeo. Para denotar el ángulo azimutal se usa   y para referirse al polar, latitud o colatitud se usa  .

Relación con otros sistemas de coordenadas editar

Relación con las coordenadas cartesianas editar

Sobre los conjuntos abiertos:

 

Existe una correspondencia unívoca  entre las coordenadas cartesianas y las esféricas, definidas por las relaciones:

 

Estas relaciones se hacen singulares cuando tratan de extenderse al propio eje  , donde  , en el cual φ, no está definida. Además, φ no es continua en ningún punto   tal que  .

La función inversa   entre los dos mismos abiertos puede escribirse en términos de las relaciones inversas:

 

Siendo su jacobiano:  

 
Coordenadas esféricas y ejes cartesianos relacionados

Relación con las coordenadas cilíndricas editar

Como sistema intermedio entre las coordenadas cartesianas y las esféricas, está el de las coordenadas cilíndricas, que se relaciona con el de las esféricas por las relaciones

 

y sus inversas

 

Líneas y superficies coordenadas editar

Las líneas coordenadas son aquellas que se obtienen variando una de las coordenadas y manteniendo fijas las otras dos. Para las coordenadas esféricas, estas son:

  • Líneas coordenadas  : Semirrectas radiales partiendo del origen de coordenadas.
  • Líneas coordenadas θ: Semicírculos verticales (meridianos)
  • Líneas coordenadas φ: Circunferencias horizontales (paralelos).
 

Las superficies coordenadas son aquellas que se obtienen fijando sucesivamente cada una de las coordenadas de un punto. Para este sistema son:

  • Superficies  =cte.: Esferas con centro en el origen de coordenadas.
  • Superficies θ=cte.: Conos rectos con vértice en el origen.
  • Superficies φ=cte.: Semiplanos verticales.

Las líneas y superficies coordenadas de este sistema son perpendiculares dos a dos en cada punto. Por ello, éste es un sistema ortogonal.

Base coordenada editar

A partir del sistema de coordenadas esféricas puede definirse una base vectorial en cada punto del espacio, mediante los vectores tangentes a las líneas coordenadas. Esta nueva base puede relacionarse con la base fundamental de las coordenadas cartesianas mediante las relaciones

 
 
 

e inversamente

 
 
 

En el cálculo de esta base se obtienen los factores de escala

 

Disponiendo de la base de coordenadas esféricas se obtiene que la expresión del vector de posición en estas coordenadas es

 

Nótese que no aparecen término en   o  . La dependencia en estas coordenadas está oculta en el vector  .

Diferenciales de línea, superficie y volumen editar

Diferencial de línea editar

Un desplazamiento infinitesimal, expresado en coordenadas esféricas, viene dado por

 

Diferenciales de área editar

La expresión general de un diferencial de superficie en coordenadas curvilíneas es complicada. Sin embargo, para el caso de que se trate de una superficie coordenada,   el resultado es

 

y expresiones análogas para las otras dos superficies coordenadas.

En el caso particular de las coordenadas esféricas, los diferenciales de superficie son

  •  =cte:  
  • θ=cte:  
  • φ=cte:  

Diferencial de volumen editar

El volumen de un elemento en coordenadas curvilíneas equivale al determinante del jacobiano de la transformación, multiplicado por los tres diferenciales. El jacobiano, a su vez, es igual al producto de los tres factores de escala, por lo que

 

que para coordenadas esféricas en las que el ángulo vertical empieza en el eje z da

 

y en las que el ángulo vertical empieza en el plano XY da

 

Operadores diferenciales en coordenadas esféricas editar

El gradiente, la divergencia, el rotacional y el laplaciano poseen expresiones particulares en coordenadas esféricas. Estas son:

  • Gradiente
 
  • Divergencia
 
  • Rotacional
 
  • Laplaciano
 

Véase también editar

Referencias editar

Bibliografía editar