Soporte (matemática)

(Redirigido desde «Soporte compacto»)

En matemáticas, se denomina soporte de una función al conjunto de puntos donde la función no es cero, o a la clausura de ese conjunto. Este concepto es usado muy ampliamente en análisis matemático. En la clase de funciones con soporte que están acotadas, también desempeña un papel mayor en varios tipos de teorías de dualidad matemática.

Definición

editar

Supóngase que   es una función real cuyo dominio es un conjunto arbitrario,   entonces el soporte de  , denotado por  , es el conjunto de puntos en   donde   no es cero, esto es

 

Soporte cerrado

editar

Técnicamente, se define el soporte de una función   cualquiera, como sigue:

 

Se dice que una función tiene soporte compacto si la adherencia del conjunto donde no es nula conforma un conjunto cerrado y acotado.

En probabilidad

editar

Si   es una variable aleatoria definida en   entonces el soporte de   es el conjunto cerrado más pequeño   tal que:

 

El soporte de una variable aleatoria discreta   se define como el conjunto   y el soporte de una variable aleatoria continua   se define como el conjunto   donde   denota la función de densidad de la variable aleatoria  .

Véase también

editar

Referencias

editar

Bibliografía

editar
  • Folland, Gerald B. (1999): Real Analysis, 2nd ed. New York: John Wiley. p. 132.
  • Hörmander, Lars (1990): Linear Partial Differential Equations I, 2nd ed. Berlín: Springer-Verlag. p. 14.
  • Pascucci, Andrea (2011): PDE and Martingale Methods in Option Pricing. Berlín: Springer-Verlag. p. 678. doi:10.1007/978-88-470-1781-8. ISBN 978-88-470-1780-1.
  • Rudin, Walter (1987): Real and Complex Analysis, 3rd ed. New York: McGraw-Hill. p. 38.
  • Lieb, Elliott; Loss, Michael (2001): Analysis. Graduate Studies in Mathematics 14 (2nd ed.). American Mathematical Society. p. 13. ISBN 978-0821827833.

Enlaces externos

editar