Distribución t de Student

(Redirigido desde «T de student»)

En probabilidad y estadística, la distribución (de Student) es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño y la desviación estándar poblacional es desconocida.

Distribución t de student

Función de densidad de probabilidad

Función de distribución de probabilidad
Parámetros grados de libertad (real)
Dominio
Función de densidad (pdf)
Función de distribución (cdf) donde es la función hipergeométrica
Media para , indefinida para otros valores
Mediana
Moda
Varianza para , indefinida para otros valores
Coeficiente de simetría para
Curtosis para
Entropía

  • : función digamma,
  • : función beta
Función generadora de momentos (mgf) (No definida)

Fue desarrollada por William Sealy Gosset bajo el pseudónimo “Student”.

Aparece de manera natural al realizar la prueba t de Student para la determinación de las diferencias entre dos varianzas muestrales y para la construcción del intervalo de confianza para la diferencia entre las partes de dos poblaciones cuando se desconoce la desviación típica de una población y esta debe ser estimada a partir de los datos de una muestra.

Historia y etimología editar

 
El estadístico William Sealy Gosset, conocido como "Student"

La distribución de Student fue descrita en el año 1908 por William Sealy Gosset.

En estadística, la distribución t fue derivada por primera vez como distribución posterior en 1876 por Helmert[1][2][3]​ y Lüroth.[4][5][6]​ La distribución t también apareció en una forma más general como distribución Pearson Tipo IV en el artículo de Karl Pearson de 1895.[7]

En la literatura en lengua inglesa, la distribución toma su nombre del artículo de William Sealy Gosset de 1908 en Biometrika bajo el seudónimo de "Student".[8]​ Una versión del origen del seudónimo es que el empleador de Gosset prefería que el personal utilizara seudónimos al publicar artículos científicos en lugar de su nombre real, o prohibía totalmente la publicación de artículos[9]​, por lo que utilizó el nombre de "Estudiante" para ocultar su identidad. Otra versión es que Guinness no quería que sus competidores supieran que utilizaban la prueba t para determinar la calidad de la materia prima.[10][11]

Gosset trabajó en la fábrica de cerveza Guinness en Dublín, Irlanda, y se interesó por los problemas de las muestras pequeñas, por ejemplo, las propiedades químicas de la cebada, donde el tamaño de las muestras podía ser de sólo 3. El artículo de Gosset se refiere a la distribución como la "distribución de frecuencias de las desviaciones típicas de muestras extraídas de una población normal". Se hizo muy conocida gracias al trabajo de Ronald Fisher, que llamó a la distribución "distribución de Student" y representó el valor de la prueba con la letra t.[12][13]

Distribución t de Student a partir de una muestra aleatoria editar

Sea   variables aleatorias independientes distribuidas  , esto es,   es una muestra aleatoria de tamaño   proveniente de una población con distribución normal con media   y varianza  .

Sean

 

la media muestral y

 

la varianza muestral. Entonces, la variable aleatoria

 

sigue una distribución normal estándar (es decir, una distribución normal con media 0 y varianza 1) y la variable aleatoria

 

donde   ha sido sustituido por  , tiene una distribución   de student con   grados de libertad.

Definición editar

Notación editar

Sean   una variable aleatoria continua y  , si   tiene una distribución   con   grados de libertad entonces escribiremos   o  .

Función de densidad editar

La distribución  -student tiene como función de densidad

 

para  , donde   denota los grados de libertad y   es la función gamma.

La expresión anterior también suele escribirse como

 

donde   es la función beta.

En particular, para valores enteros de   se tiene que

para   par

 

para   impar

 

Función de distribución editar

La función de distribución puede ser escrita en términos de  , la función beta incompleta.

Para  

 

donde

 

Una fórmula alternativa, válida para   es

 

donde   es un caso particular de la función hipergeométrica.

Casos particulares editar

Ciertos valores de   dan una forma especial a la función de densidad y de distribución.

  •  
Función de densidad:
 
Función de distribución:
 
Véase Distribución de Cauchy.
  •  
Función de densidad:
 
Función de distribución:
 
  •  
Función de densidad:
 
Función de distribución:
 
  •  
Función de densidad:
 
Véase Distribución normal.
Función de distribución:
 
Véase Función error.

Propiedades editar

Si   es una variable aleatoria tal que   entonces   satisface algunas propiedades.

Media editar

La media de   para valores   es

 

Varianza editar

La varianza de   para valores   es

 

Curtosis editar

La curtosis de   para valores   es

 

Caracterización editar

La distribución   de Student con   grados de libertad puede definirse como la distribución de la variable aleatoria   definida por:

 

donde

Para una constante   no nula, el cociente

 

es una variable aleatoria que sigue la distribución no central   de Student con parámetro de no-centralidad  .

Intervalos de confianza para muestras de la distribución normal editar

Intervalo para la media cuando σ² es desconocida editar

Sean   una muestra aleatoria proveniente de una población con distribución   donde   y   son desconocidos.

Se tiene que

 

y

 

son independientes entonces el cociente

 

esto es

 

Sea   tal que

 

siendo   entonces

 

por lo tanto un intervalo de   de confianza para   cuando   es desconocida es

 

Distribución t de Student generalizada editar

En términos del parámetro de escala σ̂ editar

La distribución   de Student puede generalizarse a 3 parámetros, introduciendo un parámero locacional   y un parámetro de escala   mediante la relación

 

o

 

esto significa que   tiene la distribución clásica   de Student con   grados de libertad.

La resultante distribución   de Student no estandarizada tiene por función de densidad:[14]

 

donde   no corresponde a la desviación estándar, esto es, no es la desviación estándar de la distribución escalada  , simplemente es parámetro de escala de la distribución.

La distribución puede ser escrita en términos de  , el cuadrado del parámetro de escala:

 

Otras propiedades de esta versión de la distribución son:[14]

 

En términos del parámetro inverso de escala λ editar

Una parametrización alterna está en términos del parámetro inverso de escala   definido mediante la relación  . La función de densidad está dada por:[14]

 

Otras propiedades de esta versión de la distribución son:[14]

 

Distribuciones relacionadas editar

  • Si   entonces   donde   denota la distribución F con   y   grados de libertad.

Véase también editar

Referencias editar

  1. Helmert FR (1875). «Über die Berechnung des wahrscheinlichen Fehlers aus einer endlichen Anzahl wahrer Beobachtungsfehler». Z. Math. U. Physik 20: 300-3. 
  2. Helmert FR (1876). «Über die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und uber einige damit in Zusammenhang stehende Fragen». Z. Math. Phys. 21: 192-218. 
  3. Helmert FR (1876). «Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Beobachtungsfehlers directer Beobachtungen gleicher Genauigkeit» [La precisión de la fórmula de Peters para calcular el error de observación probable de observaciones directas de la misma precisión]. Astron. Nachr. (en alemán) 88 (8–9): 113-132. Bibcode:1876AN.....88..113H. 
  4. Lüroth J (1876). «Vergleichung von zwei Werten des wahrscheinlichen Fehlers». Astron. Nachr. 87 (14): 209-20. Bibcode:1876AN.....87..209L. 
  5. «Estudios de historia de la probabilidad y la estadística. XLIV. Un precursor de la distribución t.». Biometrika 83 (4): 891-898. 1996.  Parámetro desconocido |vauthors= ignorado (ayuda)
  6. Sheynin O (1995). «El trabajo de Helmert en la teoría de errores». Arch. Hist. Exact Sci. 49 (1): 73-104. S2CID 121241599. doi:10.1007/BF00374700. 
  7. Pearson, K. (1 de enero de 1895). «Contribuciones a la teoría matemática de la evolución. II. Skew Variation in Homogeneous Material». Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 186: 343-414 (374). Bibcode:1895RSPTA.186..343P. ISSN 1364-503X. doi:10.1098/rsta.1895.0010. 
  8. "Student" [William Sealy Gosset] (1908). pdf «El error probable de una media». Biometrika 6 (1): 1-25. JSTOR 2331554. doi:10.1093/biomet/6.1.1. hdl:10338.dmlcz/143545. 
  9. Walpole, Roland; Myers, Raymond y Ye, Keying (2002). Probability and Statistics for Engineers and Scientists. Pearson Education. 
  10. Wendl MC (2016). «La fama del seudónimo». Science 351 (6280): 1406. Bibcode:2016Sci...351.1406W. PMID 27013722. doi:10.1126/science.351.6280.1406. 
  11. Mortimer RG (2005). Matemáticas para la química física (3rd edición). Burlington, MA: Elsevier. pp. 326. ISBN 9780080492889. OCLC 156200058. 
  12. Fisher RA (1925). «Aplicaciones de la distribución 'de Student'». Metron 5: 90-104. Archivado desde pdf el original el 5 de marzo de 2016. 
  13. Walpole RE, Myers R, Myers S, Ye K (2006). Probability & Statistics for Engineers & Scientists (7th edición). New Delhi: Pearson. p. 237. ISBN 9788177584042. OCLC 818811849. 
  14. a b c d Jackman, Simon (2009). Bayesian Analysis for the Social Sciences. Wiley. p. 507. 

Enlaces externos editar