Abrir menú principal

En análisis matemático, el teorema de la función implícita establece condiciones suficientes, bajo las cuales una ecuación o conjunto de ecuaciones de varias variables permite definir a una de ellas o varias de ellas como función de las demás.

Una función y(x) está dada de forma implícita cuando está definida de la forma en lugar de la habitual. Dada la ecuación (lo que se conoce como función implícita), bajo ciertas exigencias sobre la derivada de F podríamos, al menos localmente, despejar .

Por ejemplo, puede probarse que la siguiente ecuación define una función implícita en cierta región o un abierto de entre las variables x e y:

Es decir, el teorema establece que existe una función que sustituida en la ecuación anterior, la convierte en una identidad matemática.

Índice

EjemplosEditar

 
La circunferencia unitaria puede representarse por la ecuación implícita  . Alrededor del punto A, podremos expresar y como una función  . Pero no existirá una función similar en un entorno del punto B.

Antes de enunciar el teorema, considere la función

 
 

Si consideramos la ecuación  , entonces la función admite como preimágenes todos los vectores   que resuelven esta ecuación:  . Por esto, no es posible despejar globalmente una variable en términos de la otra y por lo mismo no es posible determinar cómo cambia una variable en función de la otra, al menos no globalmente pero sí en un entorno de  . (El único vector factible   en la preimagen es  ).

Otro ejemplo más complejo sería el siguiente:

 

Puede verse que si para valores de   cercanos al punto   existen dos funciones   e   tales que se cumple automáticamente para puntos de un entorno abierto:

 

Enunciado generalEditar

El enunciado general es como sigue:

Teorema (de la Función Implícita)

Sean   una función continuamente diferenciable y   cualquier vector tal que   . Considere   y defina la matriz jacobiana   y sobre esta considere que la submatriz que define   es invertible. Entonces existen los conjuntos abiertos   y   con   y   tales que para cada   existe un único   tal que   y   lo que define una función   que es continua y diferenciable y que además satisface

 

además

 

donde  .

La demostración del teorema se puede encontrar en diversos libros de cálculo, en particular el final del artículo se presenta un enlace a una demostración con detalles. Las versiones del teorema en dos dimensiones resultan útiles para fijar ideas antes de extenderse al caso de "n" dimensiones.

Diferenciación de funciones dadas de forma implícitaEditar

Para poder derivar una función implícita se usa la Regla de la cadena, en el caso de la variable independiente no hay problema ya que se deriva directamente, para la variable dependiente se considera como una función que a su vez está en función de la variable independiente:

Dada una función de manera implícita en la ecuación  , si queremos calcular la derivada de y respecto de x  , debemos considerar a   como una función en términos de la variable independiente x. Si derivamos con respecto a x la ecuación   queda, en virtud de la Regla de la Cadena:

 

Es decir que la derivada buscada es  .

Aplicación prácticaEditar

Obtener la derivada de:

 

El término   Se puede considerar que son dos funciones,   y   por lo que se derivara como un producto:

 

El término   se deriva como:

 

El término   se deriva de forma normal como:

 

El valor constante 12, que no depende ni de x ni de y, tiene por derivada 0, como corresponde a un valor constante.

 

Para el término   se puede considerar como un producto y se deriva como:

 

Al unir todos los términos se obtiene:

 

Ordenando

 

Factorizando respecto a (   ) los valores son:

 

Finalmente despejando   se obtiene la derivada de la función implícita:

 

Véase tambiénEditar

ReferenciasEditar

BibliografíaEditar

Para una colección de ejemplos:

  • Bombal, Marin & Vera: Problemas de Análisis matemático: Cálculo Diferencial, 1988, ed. AC, ISBN 84-7288-101-6.