Teorema de la función inversa

En la rama de la matemática denominada análisis matemático, el teorema de la función inversa proporciona las condiciones suficientes para que una aplicación (función) sea invertible localmente en un entorno de un punto p en términos de su derivada en dicho punto. Técnicamente es un teorema de existencia local de la función inversa. El teorema puede enunciarse para aplicaciones en Rn o se puede generalizar a variedades diferenciables o espacios de Banach.

Enunciado del TeoremaEditar

La versión en   del teorema es la siguiente: Sea   una función C1. Supongamos que para  , la diferencial   es invertible y que  . Entonces existen abiertos   tales que  ,   y   es una función biyectiva por lo que la inversa   de   es C1 y por lo tanto  .

Existe una versión del teorema en espacios de Banach, que es una generalización de lo anterior. Sin embargo, la versión presentada es la que se presenta frecuentemente en la literatura puesto que su comprensión es más fácil. La demostración del teorema no es sencilla, puede consultarse en las referencias puesto que entre se requiere aplicar el teorema del punto fijo de Banach y la norma matricial además de otros resultados del análisis matemático que se obtienen de la caracterización de la convexidad.

EjemploEditar

Consideremos la función F de R2 en R2 definida por

 

Su matriz jacobiana es

 

y su determinante

 

Como el determinante e2x es no nulo en todo punto, aplicando el teorema, para cada punto p de R2, existe un entorno de p en que F es invertible.

GeneralizacionesEditar

Variedades diferenciablesEditar

En este contexto, el teorema afirma que dada una aplicación F : MN entre dos variedades diferenciables, si la diferencial de F,

(dF)p : TpM → TF(p)N

es un isomorfismo lineal (es decir, isomorfismo entre espacios vectoriales) en un punto p de M, entonces existe un entorno abierto U de p tal que

F|U : UF(U)

es un difeomorfismo.

Dicho de otro modo, si la diferencial de F es un isomorfismo en todos los puntos p de M, entonces la aplicación F es un difeomorfismo local.

Inversa globalEditar

El teorema de la función inversa sólo garantiza localmente la existencia de una función inversa. Los requerimientos para la existencia de una inversa global son algo más complicados y no quedan garantizados por el cumplimiento de las condiciones del teorema de la función inversa. De hecho dada una función diferenciable:

 

Puede demostrarse que existe una constante   si se cumple:

 

Tal que la función f admite inversa global, donde uf es el vector desplazamiento asociado a la función definido como la resta vectorial entre la imagen de un punto y su posición inicial:

 

Puede demostrarse que   si el dominio   es convexo, mientras que un dominio no convexo requiere  .

Véase tambiénEditar

ReferenciasEditar

Para una demostración con detalles véase:

Para ejemplos de aplicación práctica:

  • Bombal, Marin & Vera: Problemas de Análisis matemático: Cálculo Diferencial, 1988, ed. AC, ISBN 84-7288-101-6.