Diferencia entre revisiones de «Leyes de Newton»

Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 190.193.27.94 a la última edición de Diegusjaimes
Línea 53:
 
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
 
=== Tercera Ley de Newton o Ley de acción y reacción ===
 
{{cita|Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en direcciones opuestas.<ref>Isaac Newton, extractos de ''Principios matemáticos de la filosofía natural'', cit., pág. 199.</ref>}}
 
La tercera ley expone que por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza de igual intensidad y dirección pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas siempre se presentan en pares de igual magnitud, sentido opuesto y están situadas sobre la misma recta. Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
 
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley.
 
Junto con las anteriores, permite enunciar los principios de [[ley de conservación|conservación]] del [[Cantidad de movimiento|momento lineal]] y del [[momento angular]].
 
<!--
==== Ley de acción y reacción fuerte de las fuerzas ====
En la Ley de acción y reacción fuerte, las fuerzas, además de ser de la misma magnitud y opuestas, son colineales. La forma fuerte de la ley no se cumple siempre. En particular, la [[campo magnético|parte magnética]] de la [[fuerza de Lorentz]] que se ejercen dos partículas en movimiento no son iguales y de signo contrario. Esto puede verse por cómputo directo. Dadas dos partículas puntuales con cargas ''q''<sub>1</sub> y ''q''<sub>2</sub> y velocidades <math>\mathbf{v}_i</math>, la fuerza de la partícula 1 sobre la partícula 2 es:</br>
</br>
:<math>\mathbf{F}_{12}= q_2 \mathbf{v}_2\times \mathbf{B}_1 = \frac{\mu q_2q_1}{4\pi}\ \frac{\mathbf{v}_2\times (\mathbf{v}_1\times\mathbf{\hat{u}}_{12})}{d^2} </math>
</br>
donde ''d'' la distancia entre las dos partículas y <math>\mathbf{\hat{u}}_{12}</math> es el vector director unitario que va de la partícula 1 a la 2. Análogamente, la fuerza de la partícula 2 sobre la partícula 1 es:</br>
</br>
:<math>\mathbf{F}_{21}= q_1 \mathbf{v}_1\times \mathbf{B}_2 = \frac{\mu q_2q_1}{4\pi}\ \frac{\mathbf{v}_1\times (\mathbf{v}_2\times(-\mathbf{\hat{u}}_{12}) )}{d^2} </math>
</br>
Empleando la identidad vectorial <math>\mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\cdot\mathbf{c})\mathbf{b} - (\mathbf{a}\cdot\mathbf{b})\mathbf{c}</math>, puede verse que la primera fuerza está en el plano formado por <math>\mathbf{\hat{u}}_{12}</math> y <math>\mathbf{v}_1</math> que la segunda fuerza está en el plano formado por <math>\mathbf{\hat{u}}_{12}</math> y <math>\mathbf{v}_2</math>. Por tanto, estas fuerzas no siempre resultan estar sobre la misma línea, aunque son de igual magnitud.
-->
 
== Generalizaciones ==