Usuario:Amalia1983/Taller

Tipo de pila de combustible Electrolito Potencia eléctrica (W) Temperatura de trabajo (°C) Eficiencia de la pila (%) Eficiencia del sistema (%) Estado
Pila de combustible de hidruros metálicos solución acuosa alcalina -20

Comercial / investigación

Pila de combustible electro-galvánica solución acuosa alcalina >40 Comercial / investigación
Pila de combustible de ácido fórmico membrana polimérica (ionómero) < 50 W < 40 Comercial / investigación
Batería de zinc-aire solución acuosa alcalina <40 Producción en masa
Pila de combustible microbiana Membrana de polímero o ácido húmico <40 investigación
Pila de combustible regenerativa membrana polimérica (ionómero) <50 Comercial / investigación
Pila de combustible borohidruro solución acuosa alcalina 70 Comercial / investigación
Pila de combustible de metanol reformado membrana polimérica (ionómero) 5 W – 100 kW 125-300 50–60 25–40 Comercial / investigación
Pila de combustible de etanol membrana polimérica (ionómero) < 140 mW/cm² > 25 investigación
Pila de combustible REDOX electrolitos líquidos y membrana polimérica (ionómero) 1 kW – 10 MW investigación
Pila de combustible cerámica protónica conductor de H+ de óxido cerámico investigación
Pila de combustible de carbono varios diferentes 700–850 80 70 comercial/investigación
Bio-pilas de combustible enzimáticas cualquiera que no desnaturalice la enzima <40 investigación
Pila de combustible de magnesio-aire agua salada (-20)-555 90 comercial/investigación


Acuaciones editar

Comportamiento editar

La función de Gibbs y el potencial de Nernst editar

En una pila de combustible se produce una reacción electroquímica a temperatura y presión constantes que nunca llegará al equilibrio. Al trabajo que se puede obtener en dichas condiciones se le llama trabajo de no expansión [1]​ y su valor máximo coincide con la variación de energía libre de Gibbs. En el caso de una reacción electroquímica este trabajo es la energía eléctrica necesaria para liberar los electrones, Welect, y viene dado por el cambio en la función de Gibbs, ΔGreac, de la reacción química (también se le llama energía libre de reacción)[1]​:



Esta expresión es particularmente útil para evaluar el trabajo eléctrico que se produce en las células de combustible y células electroquímicas. El trabajo eléctrico se obtiene teniendo en cuenta el número n de electrones son liberados por cada molécula producida en la reacción química, y la diferencia de potencial E que adquieren al ser liberados. Dicho trabajo es igual a –neE, siendo e la carga del electrón. Si queremos expresar la reacción por mol en lugar de por molécula, habrá que multiplicar n por el número de Avogadro con lo que se tendrán nNA electrones por cada mol producido. Por tanto, el trabajo asociado a la generación de nNA electrones, con una diferencia de potencial E, es [2]​:



Al producto eNA, que es la carga eléctrica de un mol de electrones, se le da el nombre de constante de Faraday y se designa con la letra F. Por tanto:



siendo .[3]


El potencial E es conocido como potencial de Nernst [2]​ y da la tensión eléctrica que se puede obtener cuando se produce una reacción electroquímica de forma reversible. Dicho potencial también es conocido como fuerza electromotriz y es el que se obtiene en condiciones de circuito abierto, es decir, en ausencia de corriente eléctrica.

Es usual encontrar la energía libre de reacción, o bien, los datos necesarios para calcularla,(como entalpías y entropías) tabulados para el estado estándar de T=298,15 K y P = 1 atm [4]​. Dicha energía de reacción en el estado estándar se denota como ΔG0. Para una reacción que no ocurra en estas condiciones estándar se puede escribir [4]



donde Q es el Cociente de reacción.

Dividiendo la ecuación anterior entre nF obtenemos la denominada Ecuación de Nernst:



donde E0 es conocido como el potencial estándar de celda, que no es más que la energía estándar de reacción de Gibbs expresada en Voltios.


Como en las pilas de combustible es normal tener los reactivos y los productos en estado gaseoso, entonces Q se obtiene a partir de las presiones parciales [2][1]​:



donde νi y νj son los coeficientes estequiométricos de la reacción química. Por lo que el potencial de Nernst en este caso será:



El potencial de Nernst es el equivalente a la “fuerza electromotriz” o “potencial de celda” de una pila, que es la diferencia de potencial que se observa en una pila en circuito abierto.

Rendimiento editar

Se define el rendimiento o eficiencia ideal de la conversión química a eléctrica como el cociente entre la energía eléctrica obtenida en el caso en el que la corriente sea infinitamente pequeña, Welec,ideal o como vimos en el primer apartado de esta sección,ΔGreac,ideal, y la energía química puesta en juego ∆Hreac podemos escribirlo como:



Como ejemplo, puede hacerse el cálculo del rendimiento ideal en condiciones estándar (T=298,15 K y P = 1 atm), ηideal0, para una pila basada en la reacción de hidrógeno con oxígeno:



donde el agua producida es líquida. En estas condiciones [2]​:




por tanto,



Para otras reacciones electroquímicas se procedería de forma análoga.

La diferencia de potencial en los electrodos de la pila decrece cuando existe corriente. Por conveniencia, el rendimiento de una pila de combustible se expresa a menudo en términos del cociente entre el voltaje ideal y el voltaje real (con el que opera la pila de combustible), siendo este último menor que el primero debido a las pérdidas óhmicas y a las asociadas con mecanismos de polarización dentro de la pila. La expresión de la eficiencia de la pila de combustible es la siguiente:



donde Vreal es el voltaje medido entre los electrodos en condiciones reales de funcionamiento, e I es la intensidad de corriente que circula por el circuito externo. Esta eficiencia, también se conoce como eficiencia en voltaje [5]​. En esta expresión se considera que todo el combustible está siendo aprovechado, puesto que así ocurre en la mayoría de los motores de combustión. Sin embargo, en las pilas de combustible no se suele dar la conversión completa del combustible siendo necesario, para calcular la eficiencia en voltaje real, multiplicar la ecuación anterior por un factor que nos indique cuánto combustible está siendo utilizado.

Por tanto, aunque el rendimiento ideal parezca muy elevado, se ve reducido por las condiciones reales de funcionamiento.

Comportamiento real editar

Curva de polarización

Como se ha indicado en secciones anteriores, el potencial de Nernst da la “fuerza electromotriz” de la pila de combustible, es decir, la diferencia de potencial entre sus electrodos en ausencia de corriente eléctrica. Una vez que el circuito se cierra y la corriente empieza a fluir aparecen pérdidas de potencial relacionadas con la conducción de carga dentro del electrolito y con fenómenos de polarización. Como consecuencia, la diferencia de potencial que se mide entre los electrodos es menor que la ideal (potencial de Nernst) calculada en la sección anterior.

Para visualizar claramente la diferencia entre ambos potenciales se suele representar el potencial frente a la densidad de corriente, dando lugar a la llamada curva de operación, también llamada curva de polarización. Dicha curva, como muestra la figura de la derecha, presenta tres regiones principales de operación.

Como se muestra entre paréntesis, cada una de las regiones mostradas en la gráfica anterior tiene asociada una fuente de pérdida de eficiencia [2]​:

  • Pérdidas por activación: debidas a la baja velocidad de las reacciones en la región de polarización por activación.
  • Pérdidas óhmicas(resistivas): relacionadas con el flujo de electrones a través del material de los electrodos, así como a la resistencia al flujo de iones a través del electrolito en la región de polarización óhmica.
  • Pérdidas por concentración: los cambios de concentración del gas o transporte de masas región de polarización por concentración.

A continuación veremos con más detalle los tipos de pérdidas citados.


Pérdidas por activación editar

Este tipo de pérdidas se deben a la lentitud de las reacciones en los electrodos. Para que las reacciones electroquímicas comiencen, al igual que en las reacciones químicas comunes, los reactivos deben superar la energía de activación. En realidad, en los electrodos no ocurre una sola reacción sino varias, cada una de ellas con su propia velocidad y energía de activación. Así, las pérdidas por activación son el resultado de las pérdidas debidas a cada una de estas reacciones sucesivas.

Las pérdidas por activación se expresan matemáticamente mediante la ecuación de Tafel [6]​:



R≡constante de los gases ideales medida en J/molK

T≡temperatura de operación en K

α≡coeficiente de transporte de electrones (adimensional)

n≡número de electrones por molécula (adimensional)

F≡constante de Faraday en C/mol

i≡corriente generada en A

i0≡corriente de intercambio (depende del tipo de material),medida en A


Esta ecuación es válida para valores de ΔEact≥(50-100)mV [6]​.

Según Barbir [7]​ los factores que reducen las pérdidas por activación son:

  • Incremento de la temperatura de operación.
  • Catalizadores efectivos.
  • Uso de oxígeno puro como agente oxidante en vez de aire.
  • Incremento de la concentración de los reactivos.
  • Presiones de operación más altas.


Pérdidas Óhmicas editar

Las pérdidas óhmicas se deben a la resistencia al flujo de iones en el electrolito y a la resistencia al flujo de electrones que viajan a través del electrodo. Los electrodos y el electrolito suelen ser materiales fundamentalmente óhmicos, es decir, materiales en los que predomina el comportamiento lineal de la tensión frente a la intensidad de corriente. Por tanto, las pérdidas óhmicas se pueden expresar a través de la ley de Ohm:



donde I es la corriente que fluye a través de la pila y R es la resistencia total, que incluye la debida a los electrones, la debida a los iones y la debida a los terminales de contacto y las conexiones:



Dependiendo de la geometría de la pila de combustible, la contribución a la resistencia total de cada una de estas resistencias varía [7]​. Así en una pila de combustible tipo SOFC con una estructura plana domina la resistencia iónica, mientras que en una SOFC de tipo tubular, domina la debida al paso de los electrones.

Los factores que reducen las pérdidas óhmicas son, según Barbir [7]​:

  • Utilizar electrodos fabricados con un material de alta conductividad eléctrica.
  • Realizar un buen diseño estructural, minimizando los caminos de paso de corriente.
  • Uso de membranas iónicas delgadas.


Pérdidas por concentración editar

Cuando el transporte de masas ocurre a velocidad finita en el electrodo se limita la entrada de gas reactivo y la correcta evacuación de los productos, por ello, a menudo ocurre que el gas del interior se consume, diluyéndose en los productos. Como consecuencia, se crea un gradiente de concentración entre la superficie del electrodo y las entradas de suministro, que contribuye negativamente al potencial de salida.

La tasa de transporte de masa hacia la superficie de un electrodo, se puede describir a través de la ley de difusión de Fick [8]​ :



Donde D es el coeficiente de difusión de los reactivos, CB su concentración de máxima, CS su concentración en la superficie y δ, es el espesor de la capa de difusión. La corriente límite, IL, es una medida de la máxima velocidad con que el reactivo puede suministrarse al electrodo y esto ocurre cuando CS=0. Por tanto:



Entonces podemos expresar las concentraciones de la forma siguiente:



Por tanto, la ecuación de Nernst para las especies químicas en condiciones de equilibrio, o en circuito abierto, es:



Cuando sí hay flujo de corriente, la concentración superficial es inferior a la concentración máxima, y la ecuación de Nernst se convierte en



La diferencia de potencial que se produce por un cambio concentración en el electrodo, ΔEcon, se conoce con el nombre de polarización por concentración:



o en función de la corriente límite:



Para reducir este tipo de pérdidas Barbir [7]​ da las siguientes indicaciones:

  • Depurar con frecuencia el contenido de agua en el cátodo para que los gases puedan difundirse adecuadamente.
  • Incrementar la temperatura de operación para que el agua acumulada se evapore y se reduzca así, el bloqueo de los gases que se suministran.

Variables que afectan al funcionamiento editar

El potencial de salida de las pilas de combustible se ve afectado por las condiciones de operación (temperatura, presión, composición del gas, aprovechamiento de reactivos, densidad de corriente), por el diseño de la pila y por otros factores (impurezas, durabilidad del dispositivo) que hacen que se aleje del valor ideal antes calculado. Para más información sobre este tipo de pérdidas, consultar las siguientes referencias [2][7][9][10]​.

Selección de videos editar

En esta sección se resumirán los principales aspectos referidos a treinta y cinco videos seleccionados y se hará breve una reseña de los mismos. La selección se ha centrado en videos de carácter divulgativo y sobre todo, en los que tratan los aspectos científicos y técnicos de las pilas de combustible. Sin embargo, con el fin de complementar el rigor científico de los otros videos, también se han seleccionado videos cuyas explicaciones son escuetas pero que nos ofrecen una perspectiva visual del dispositivo que estamos tratando y de sus aplicaciones. La lista consta de 11 videos en español y 24 en inglés. El enlace directo a la lista de reproducción es el siguiente:

Pilas de Combustible

Videos en español editar

1º Las pilas de combustible.

  • Enlace directo
  • Autor: Universidad de Vigo, Prof. Anxo Sánchez Bermúdez
  • Duración: 19:55 minutos.
  • Descripción: introducción a las pilas de combustible. Define claramente este tipo de dispositivos y habla de sus distintos aspectos de forma general y sin ahondar en detalles. Sin embargo, hay que tener en cuenta que cuando habla de las características, las ventajas e inconvenientes se está refiriendo principalmente a la pila de hidrógeno. Se trata pues de un video de carácter divulgativo y muy útil para una primera aproximación a la temática.


2º Serie de videos: Energía del Hidrógeno.

  • Enlace directo
  • Autor: Universidad Politécnica de Madrid, realizado por alumnos.
  • Duración: 1:58 horas
  • Descripción: se trata de nueve de presentaciones realizadas por los alumnos de la UPM acerca de las pilas de combustible de hidrógeno y sus distintas aplicaciones; cada presentación se centra en aspecto distinto. El interés de estos videos reside en que en ellos se muestran y analizan un gran número de aplicaciones que pueden tener estos dispositivos. A pesar de que se centran en aspectos y aplicaciones concretos, generalmente pueden ser entendibles para el público no especializado puesto que no se suelen exponer detalles muy técnicos y algunas de las presentaciones comienzan con una pequeña introducción sobre las pilas de combustible. A continuación se muestra una descripción de cada uno de los videos que compone la serie:
    • Aplicaciones estacionarias de los diversos tipos de pilas de combustible: Se describen las principales características de los distintos tipos de pila de combustible y sus aplicaciones en la generación de potencia estacionaria.
    • Aplicaciones en automoción: Se describen los prototipos fabricados por las distintas compañías de automóviles: se expone el estado de la implantación comercial de los automóviles impulsados con pilas de combustible.
    • Aplicaciones portátiles de las pilas de combustible: Se discute la elección de combustible en el caso de las pilas de combustible utilizadas en aplicaciones portátiles y se muestran algunos prototipos.
    • Uso del hidrógeno en vehículos aeroespaciales 1: Se explica el ámbito de aplicación y el uso de las pilas de combustible en transbordadores espaciales y en aviones tripulados y no tripulados.
    • Uso del hidrógeno en vehículos aeroespaciales 2: Continúa donde termina el video anterior complementándolo. Se explican los tipos de propulsión de vehículos aeroespaciales con uso del hidrógeno: pilas de combustible, motores de combustión interna y sistemas híbridos. Se detalla el "Proyecto Aviazor".
    • Proyectos que desarrollan propulsión de vehículos aeroespaciales con hidrógeno: Se continúa la con la temática del video 5, describiendo las diferentes etapas y las características de los proyectos algunos proyectos como: "Ion Tiger", "Solareagle", "Phantom Eye" y "Global Observer".
    • Aplicaciones de la pilas de combustible en el medio marino: Se da una visión general sobre qué es una pila de combustible, su clasificación y sus principales ventajas. Se ofrece una breve visión de las posibles aplicaciones de los distintos tipos de pilas de combustible en el medio marino.
    • Aplicaciones de las pilas de combustible en artefactos submarinos: Se describen los submarinos existentes que cuentan en su propulsión con pilas de combustible. Se explica qué es un sistema AIP (Air Independent Propulsion). Se explica en especial el submarino S-80 que utilizará hidrógeno procedente de bioetanol reformado para alimentar pilas de combustible PEMFC. Se describen también artefactos submarinos autónomos no tripulados.
    • Aplicaciones de las pilas de combustible en buques de superficie: Se describen proyectos de embarcaciones de superficie que incorporan pilas de combustible en su sistema de propulsión principal o para atender consumo eléctrico o como unidades de potencia auxiliar. Se estudia el efecto de la reducción de emisiones como consecuencia del uso de pilas de combustible en el mundo marino.

3º Pila de hidrógeno.

  • Enlace directo
  • Autor: Tecnópolis. Presentado por Vicente López
  • Duración: 1:40 minutos.
  • Descripción: Explicación breve pero concisa sobre el vehículo de pila de combustible de hidrógeno y sobre la viabilidad del hidrógeno como vector energético, destacando las ventajas medioambientales de su utilización.
  • Enlace directo

4º Autobuses con pila de combustible.

  • Enlace directo
  • Autor: Cursos CEER.
  • Duración: 1:53 minutos.
  • Descripción: explicación dinámica con figuras y texto sobre el funcionamiento de una pila de combustible tipo PEM . Se describen los componentes principales y se muestra su ubicación específica en la pila. Finalmente, se ve su aplicación en un vehículo de transporte(autobús).


5º Producir electricidad mediante las plantas.

  • Enlace directo
  • Autor: Euronews.
  • Duración: 1:58 minutos.
  • Descripción: En este video se muestra como las plantas verdes generan electricidad. Se trata del proyecto Plant-e de la Universidad de Wageningen de los Países Bajos. La pila de combustible vegetal microbiana genera electricidad a partir de la interacción natural entre las raíces de las plantas y las bacterias del suelo. Funciona mediante el aprovechamiento de hasta el 70% de material orgánico producido a través de la fotosíntesis que no utiliza la planta y que se segrega por las raíces. Las bacterias que están junto a las raíces interactúan con los residuos orgánicos, liberando electrones. Y así se genera electricidad: colocando un electrodo que absorbe los electrones liberados.


6º Células de combustible.

  • Enlace directo
  • Autor: Universidad Politécnica de Valencia, Javier Orozco Messana.
  • Duración: 11:01 minutos.
  • Descripción: Se trata de una introducción a las pilas de combustible. Comienza con una breve definición. Continúa con un recorrido histórico. Posteriormente se centra en el funcionamiento tomando como ejemplo una pila de hidrógeno y luego habla de los demás tipos de pilas.

Videos en inglés editar

1º How does a fuel cell work?

  • Enlace directo
  • Autor: Naked Science Scrapbook.
  • Duración : 4:01 min.
  • Descripción: Introducción a las pilas de combustible. Las explicaciones se realizan mediante dibujos en un cuaderno acompañado de una voz en off. Comienza anunciándolas como la posible tecnología del futuro y hace referencia a sus posibles aplicaciones en distintos dispositivos. Explica sus principios de funcionamiento tomando como ejemplo una pila de hidrógeno y luego explica el funcionamiento y las aplicaciones de las PEMFC, de las AFC y de las SOFC. Alude en repetidas ocasiones a las ventajas que ofrecen estos dispositivos frente a los métodos de obtención de electricidad tradicionales.

2º How a fuel cell works?

  • Enlace directo
  • Autor: University of Waterloo Alternative Fuel Cell Team.
  • Duración: 1:51 minutos.
  • Descripción: explicación divulgativa sobre el funcionamiento del coche de pila de combustible de hidrógeno. Se muestra su ubicación dentro del vehículo así como la del combustible. Se explica el funcionamiento lo que ocurre dentro de una celda individual mediante una animación.

3ºBuilding a Fuel Cell Stack.

  • Enlace directo
  • Autor: Schatz Energy Research Center.
  • Duración: 11:05 minutos.
  • Descripción: en este video muestra el proceso de montaje de un apilamiento de pilas de combustible tipo PEM. Comienza exponiendo brevemente el mecanismo de funcionamiento de una pila de combustible de este tipo. Por último, se nos muestra cómo se realiza el montaje paso a paso, todo ello acompañado de las explicaciones pertinentes.

4º OWI's Salt Water Fuel Cell Car.

  • Enlace directo
  • Autor: ABC News.
  • Duración: 1:45 minutos.
  • Descripción: el video muestra un coche de juguete cuyo combustible es agua salada que puede funcionar de manera continua de 5 a 7 horas. Este automóvil da la oportunidad tanto a niños como a adultos de aprender acerca de las formas de energía limpia.

5º Toyota's Fuel Cell Vehicle: A Zero-Emission Car Coming 2015!

  • Enlace directo
  • Autor: DNews.
  • Duración: 3:27 minutos.
  • Descripción: en este video se muestra un vehículo de pila de combustible de hidrógeno que saldrá al mercado en 2015. Se entrevista al ingeniero superior de Toyota Fuel Cell Group, quien da una breve explicación de lo que es una pila de hidrógeno y describe brevemente el funcionamiento de un vehículo de hidrógeno y la diferencia que hay entre éste y los vehículos híbridos. Se hace hincapié en que se trata de una tecnología limpia. desde el punto de vista medioambiental.

6º Virtual Fuel Cell Interactive Visualization.

  • Enlace directo
  • Autor: NASA Glenn Graphics and Visualization Lab.
  • Duración: 1:36 minutos.
  • Descripción: video hecho a partir de un programa de simulación de una pila de combustible de configuración tubular. La simulación permite contralar la cantidad de impurezas del combustible, viéndose así, cómo una elevada cantidad de éstas afectan directamente al funcionamiento de la pila. También se puede controlar la velocidad de la simulación y la potencia de salida de la pila.


7º Serie de videos: Introduction to the Fuel Cell.

  • Enlace directo
  • Autor: Universidad Politécnica de Valencia: María Desamparados Ribes Greus.
  • Duración :1:59:41 horas
  • Descripción: en esta serie de videos se hace un completo análisis sobre el funcionamiento de las pilas de combustible. Se trata prácticamente toda la temática expuesta en esta memoria desde un punto de vista científico-técnico, las explicaciones están hechas de forma clara y, en la medida que la especialización de la temática lo permite, divulgativa. Se trata de una pues de una completa guía de introducción, por ello, se ha incluido la serie entera.

Main Aspect: se dan a conocer los aspectos fundamentales y las propiedades de las pilas de combustible; se centra en su papel en el entorno de las energías renovables. Se trata a modo introductorio varios aspectos generales de las pilas de combustible: su electroquímica, su estructura básica, sus principales características y sus aplicaciones. En los videos siguientes se profundizará en los temas citados.

    • Main Aspect: se dan a conocer los aspectos fundamentales y las propiedades de las pilas de combustible; se centra en su papel en el entorno de las energías renovables. Se trata a modo introductorio varios aspectos generales de las pilas de combustible: su electroquímica, su estructura básica, sus principales características y sus aplicaciones. En los videos siguientes se profundizará en los temas citados.
    • Electrochemical Basis of Fuel Cells: tratan, en mayor profundidad, los fundamentos electroquímicos del funcionamiento de las pilas de combustible y baterías eléctricas y las bases para poder resolver problemas para el cálculo del potencial eléctrico.
    • Main Components of a Fuel Cell: este video muestra los principales componentes (según su criterio) de una pila de combustible, el electrodo y el electrolito, y describe sus funciones. Finalmente habla de los otros componentes que se encuentran en estos dispositivos.
    • General criteria for the classification of fuel cells: este video tiene un nombre distinto en la lista de reproducción: "Power Plants". Sin embargo, el nombre de la presentación en es que se ha puesto al principio. Se clasifican las pilas de combustible por su temperatura de operación y luego se habla de los tipos de electrolito que pueden utilizar.
    • Fuels: como su propio nombre indica, en este video se presentan los combustibles más comúnmente utilizados en las pilas de combustible.
    • Proton exchange membrane fuel cells: se exponen las características básicas de las PEMFC, sus componentes y su funcionamiento.
    • Transport in PEMFC: se explican los fenómenos de transporte que tienen lugar dentro de una pila de combustible Se ve el paso del combustible por el ánodo (y del comburente por el cátodo) donde tenemos partículas de platino (catalizador) y por el electrolito. Posteriormente se describen los fenómenos que tienen lugar en la membrana polimérica.
    • Fuel cell power plant: se hace un breve repaso del funcionamiento de una celda individual para luego dar paso a explicar lo que es un apilamiento y su inclusión en una planta de energía.
    • Fuels. Hydrogen: describe las características principales del hidrógeno como combustible, destacando las que lo hacen medioambientalmente atractivo. También señala los inconvenientes asociados a su extracción, transporte y peligro de explosión.
    • Applications of fuel cells: como su propio nombre indica, el video trata sobre las distintas aplicaciones en las que se utilizan las pilas de combustible. Comienza hablando de las características generales y luego, da paso a las aplicaciones fijas. Por último se habla de las aplicaciones portátiles.
    • Deviations from ideal Behaviour: se explican los fenómenos que provocan la reducción de eficiencia que tiene lugar en las pilas de combustible en operación, comparando su funcionamiento con el ideal. Se exponen las expresiones que permiten describir y predecir su comportamiento.
    • Overpotential: describe los distintos tipos de pérdidas, por activación, resistivas y por concentración, asociadas a las distintas regiones de la curva de polarización de la pila de combustible.
    • Direct Methanol Fuel Cells: se presentan las pilas de combustible de metanol (DMFC) y las de etanol. Se tratan sus fundamentos y las ventajas y las limitaciones de su uso respecto a otras pilas de combustible, comparándola mayormente con la PEM.
    • Alkaline Fuel Cell: describe el funcionamiento de la pila de combustible alcalina. Habla de sus ventajas e inconvenientes y las compara con otros tipos de pilas de combustible. También se presentan sus aplicaciones más comunes.


8º Compact, high-power hydrogen fuel cell for release in spring 2013

  • Enlace directo
  • Autor: Diginfo TV
  • Duración: 2:46 minutos.
  • Descripción: el video nos muestra distintos tipos de pila de combustible diseñados por la Universidad de Kioto aplicables tanto a dispositivos que con requerimientos de potencia bajos (teléfonos móviles, ordenadores portátiles, etc) como medios(televisores de plasma) e incluso con potencias altas que permiten alimentar varios aparatos la simultáneamente o generar electricidad para un hogar.

Referencias editar

  1. a b c Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, Oxford University, Press, W. H. Freeman and Company New York 2010
  2. a b c d e f Fuel Cell HandBook, Seventh Edition, EG&G Technical Services, Inc., 2004
  3. CODATA (2006): Faraday constant, NIST.
  4. a b Petrucci R. Química General,Ed.Precinte Hall.2003
  5. https://www.princeton.edu/~humcomp/sophlab/ther_58.htm
  6. a b S.N. Simons, R.B. King and P.R. Prokopius, in Symposium Proceedings Fuel Cells Technology Status and Applications, Figure 1, p. 46, Edited by E.H. Camara, Institute of Gas Technology, Chicago, IL, 45, 1982.
  7. a b c d e F. Barbir, PEM fuel cell, ELSEVIER, 2005.
  8. Fundamentos de transferencia de calor, Frank P.Incropera, David P. DeWitt, Pearson Educación, 1999
  9. Fuchs, M. and F. Barbir, Development of Advanced, Low-Cost PEM Fuel Cell Stack and System Design for Operation on Reformate Used in Vehicle Power Systems, Transportation Fuel Cell Power Systems, 2000 Annual Progress Report (U.S. Department of Energy, Office of Advanced Automotive Technologies, Washington, D.C., October 2000) pp. 79-84
  10. http://mse.xjtu.edu.cn/keyan/hsmg/fc_course/fcm00r0.pdf