Inicio
Al azar
Cercanos
Acceder
Configuración
Donaciones
Acerca de Wikipedia
Limitación de responsabilidad
Buscar
Anexo
:
Integrales de funciones racionales
Idioma
Vigilar
Editar
La siguiente es una lista de
integrales
de
funciones racionales
.
∫
(
c
)
d
x
=
c
x
+
c
{\displaystyle \int (c)dx=c{x}+c}
∫
(
x
)
d
x
=
x
2
2
{\displaystyle \int (x)dx={\frac {x^{2}}{2}}}
∫
(
a
x
k
+
b
)
n
d
x
=
1
a
∫
(
a
x
k
+
b
)
n
a
d
x
=
1
a
(
a
x
k
+
b
)
n
+
1
(
n
+
1
)
k
x
(
p
a
r
a
:
n
≠
−
1
)
{\displaystyle \int (ax^{k}+b)^{n}dx={\frac {1}{a}}\int (ax^{k}+b)^{n}adx={\frac {1}{a}}{\frac {(ax^{k}+b)^{n+1}}{(n+1)kx}}\qquad (\;para:\;n\neq -1\;)}
∫
(
a
x
+
b
)
n
d
x
=
1
a
∫
(
a
x
+
b
)
n
a
d
x
=
1
a
(
a
x
+
b
)
n
+
1
n
+
1
(
p
a
r
a
:
n
≠
−
1
)
{\displaystyle \int (ax+b)^{n}dx={\frac {1}{a}}\int (ax+b)^{n}adx={\frac {1}{a}}{\frac {(ax+b)^{n+1}}{n+1}}\qquad (\;para:\;n\neq -1\;)}
∫
d
x
a
x
+
b
=
1
a
∫
(
a
x
+
b
)
−
1
a
d
x
=
1
a
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {dx}{ax+b}}={\frac {1}{a}}\int {(ax+b)^{-1}}adx={\frac {1}{a}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(
p
a
r
a
:
n
∉
{
−
1
,
−
2
}
)
{\displaystyle \int x(ax+b)^{n}dx={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad (\;para:\;n\not \in \{-1,-2\}\;)}
∫
x
d
x
a
x
+
b
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {x\;dx}{ax+b}}={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫
x
d
x
(
a
x
+
b
)
2
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
{\displaystyle \int {\frac {x\;dx}{(ax+b)^{2}}}={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫
x
d
x
(
a
x
+
b
)
n
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
(
p
a
r
a
:
n
∉
{
1
,
2
}
)
{\displaystyle \int {\frac {x\;dx}{(ax+b)^{n}}}={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad (\;para:\;n\not \in \{1,2\}\;)}
∫
x
2
d
x
a
x
+
b
=
1
a
3
(
(
a
x
+
b
)
2
2
−
2
b
(
a
x
+
b
)
+
b
2
ln
|
a
x
+
b
|
)
{\displaystyle \int {\frac {x^{2}\;dx}{ax+b}}={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫
x
2
d
x
(
a
x
+
b
)
2
=
1
a
3
(
a
x
+
b
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
{\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{2}}}={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫
x
2
d
x
(
a
x
+
b
)
3
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
{\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{3}}}={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫
x
2
d
x
(
a
x
+
b
)
n
=
1
a
3
(
−
1
(
n
−
3
)
(
a
x
+
b
)
n
−
3
+
2
b
(
n
−
2
)
(
a
+
b
)
n
−
2
−
b
2
(
n
−
1
)
(
a
x
+
b
)
n
−
1
)
(
p
a
r
a
:
n
∉
{
1
,
2
,
3
}
)
{\displaystyle \int {\frac {x^{2}\;dx}{(ax+b)^{n}}}={\frac {1}{a^{3}}}\left(-{\frac {1}{(n-3)(ax+b)^{n-3}}}+{\frac {2b}{(n-2)(a+b)^{n-2}}}-{\frac {b^{2}}{(n-1)(ax+b)^{n-1}}}\right)\qquad (\;para:\;n\not \in \{1,2,3\}\;)}
∫
d
x
x
(
a
x
+
b
)
=
−
1
b
ln
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x(ax+b)}}=-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
d
x
x
2
(
a
x
+
b
)
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)}}=-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
d
x
x
2
(
a
x
+
b
)
2
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
{\displaystyle \int {\frac {dx}{x^{2}(ax+b)^{2}}}=-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫
d
x
x
2
+
a
2
=
1
a
arctan
x
a
{\displaystyle \int {\frac {dx}{x^{2}+a^{2}}}={\frac {1}{a}}\arctan {\frac {x}{a}}}
∫
d
x
x
2
−
a
2
=
−
1
a
a
r
t
a
n
h
x
a
=
1
2
a
ln
a
−
x
a
+
x
(
p
a
r
a
:
|
x
|
<
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\,\mathrm {artanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad (\;para:\;|x|<|a|\;)}
∫
d
x
x
2
−
a
2
=
−
1
a
a
r
c
o
t
h
x
a
=
1
2
a
ln
x
−
a
x
+
a
(
p
a
r
a
:
|
x
|
>
|
a
|
)
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}=-{\frac {1}{a}}\,\mathrm {arcoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad (\;para:\;|x|>|a|\;)}
∫
d
x
a
x
2
+
b
x
+
c
=
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(
p
a
r
a
:
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad (\;para:\;4ac-b^{2}>0\;)}
∫
d
x
a
x
2
+
b
x
+
c
=
2
b
2
−
4
a
c
a
r
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
=
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
(
p
a
r
a
:
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {dx}{ax^{2}+bx+c}}={\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad (\;para:\;4ac-b^{2}<0\;)}
∫
x
d
x
a
x
2
+
b
x
+
c
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {x\;dx}{ax^{2}+bx+c}}={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(
p
a
r
a
:
4
a
c
−
b
2
>
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad (\;para:\;4ac-b^{2}>0\;)}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
b
2
−
4
a
c
a
r
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
(
p
a
r
a
:
4
a
c
−
b
2
<
0
)
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx={\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {artanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad (\;para:\;4ac-b^{2}<0\;)}
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
−
1
{\displaystyle \int {\frac {dx}{(ax^{2}+bx+c)^{n}}}={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}}
∫
x
d
x
(
a
x
2
+
b
x
+
c
)
n
=
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
d
x
(
a
x
2
+
b
x
+
c
)
n
−
1
{\displaystyle \int {\frac {x\;dx}{(ax^{2}+bx+c)^{n}}}={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {dx}{(ax^{2}+bx+c)^{n-1}}}}
∫
d
x
x
(
a
x
2
+
b
x
+
c
)
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle \int {\frac {dx}{x(ax^{2}+bx+c)}}={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {dx}{ax^{2}+bx+c}}}