Diferencia entre revisiones de «Complejidad irreducible»

Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 190.95.28.158 a la última edición de Eloy
Línea 27:
En 2001 Behe escribió "''existe cierta asimetría entre mi actual definición de complejidad irreductible y el objetivo de la Selección natural. Espero reparar este problema en el futuro''".
 
== Presuntos ejemplos de Fisiología ==
=== Coagulación ===
El sistema de [[coagulación]] en los vertebrados es un complejo sistema biológico, que es aparentemente una muestra de compejidad irreducible{{sinreferencias}}. Sin embargo, la comunidad científica argumenta con evidencias el segundo principio de la evolución: "cualquier sistema no necesariamente necesita tener la misma función que el sistema ancestral del cual evolucionó", por ejemplo las aletas de los delfines tienen una función distinta a las patas de los mamíferos terrestres. Otro ejemplo es la complejidad del [[flagelo]] bacteriano, cuya estructura es muy compleja, sin embargo las similitudes de las [[proteína]]s que lo componen con otros sistemas de excreción celular es increíblemente similar, la adecuación, organización paulatina de dichas estructuras fue confiriendo otras funciones distintas a través de muchas generaciones, de un lento refinamiento de las estructuras que le fue confiriendo ventajas en el medio donde vivía, lo que fue gracias al proceso de [[selección natural]], dichas estructuras no aparecen completas y de un solo golpe como el creacionismo lo propone (diseño inteligente), este modelo explicativo fue propuesto en el 2003 por [[Nicholas J. Matzke]], modelo que ha sido verificado y comprobado por procesos experimentales, mediante análisis de proteinas y ADN, lo que deja sin argumentos a Behe.
Línea 49:
{{cita|Parece absurdo de todo punto - lo confieso espontáneamente- suponer que el ojo, con todas sus inimitables disposiciones para acomodar el foco a diferentes distancias, para admitir cantidad variable de luz y para la corrección de las aberraciones esférica y cromática, pudo haberse formado por selección natural. La razón me dice que, si se pudiera demostrar que existen muchas gradaciones, desde un ojo sencillo e imperfecto a un ojo completo y perfecto, siendo cada grado útil al animal que lo posea; si además el ojo varía ligeramente y las variaciones son hereditarias, como ocurre ciertamente; y si estas variaciones son útiles a un animal en condiciones variables de la vida, entonces la dificultad de creer que un ojo perfecto y complejo pudo formarse por selección natural, aún cuando insuperable para nuestra imaginación, puede apenas considerarse real. El modo en el que un nervio se hace sensible a la luz apenas debería preocuparnos más que el propio hecho del surgimiento de la vida, pero puedo recalcar que varios motivos me hacen sospechar que cualquier nervio sensible puede volverse sensible a la luz, y asimismo a las grandes vibraciones del aire las cuales producen el sonido.}}
 
 
=== Argumentos ===
==== Argumentos que refutan la Teoría de Complejidad irreducible de Behe ====
{{noneutralidad}}
{{Referencias}}
====Argumentos que apoyan la comlejidad irreducible====
 
El sistema que escogió Behe como ejemplo de un sistema de complejidad irreducible es el sistema de motilidad flagelar. Lo que sigue es una interesante reacción al concepto de complejidad irreducible enunciado por Behe —donde se sugiere que el sistema flagelar en realidad no es en absoluto irreduciblemente complejo:
 
"Los científicos de la corriente dominante consideran que este argumento ha sido en gran medida refutado a la luz de una investigación bastante reciente. Observan que se ha descubierto que el cuerpo basal del flagelo es similar al sistema de secreción de Tipo III (SSTT), una estructura semejante a una aguja que usan los microorganismos patogénicos como la salmonella para inyectar toxinas en células eucariotas vivas. La base de la aguja tiene muchos elementos en común con el flagelo, pero carece de la mayoría de las proteínas que hacen funcionar a un flagelo. Así, este sistema parece refutar la aseveración de que la eliminación de cualquiera de las piezas del flagelo lo convertiría en inservible. Esto ha llevado a [Kenneth] Miller a observar que «Las piezas de este sistema complejo supuestamente irreducible tienen en realidad funciones propias»".
 
Lo que «científicos de la corriente dominante» como Kenneth Miller no parecen comprender es que todos los sistemas funcionales tienen una complejidad irreducible con independencia de que pueda encontrarse o no un subsistema funcional dentro del sistema más amplio. El sistema de motilidad flagelar sigue exigiendo al menos 35 a 40 genes que produzcan una estructura con al menos 21 proteínas diferentes dispuestas en una forma específica, donde cada una de ellas exige un mínimo de cientos de residuos de aminoácidos dispuestos de una forma específica para que pueda conseguirse en absoluto la función de la motilidad flagelar —incluso de la manera más exigua. El mero hecho de que puedan encontrarse uno o más subsistemas dentro de los requisitos globales necesarios para construir un sistema de motilidad flagelar, como un sistema SSTT, no elimina la realidad de que el sistema flagelar sigue teniendo unos requisitos estructurales mínimos que no se pueden reducir más allá de un elevado umbral sin una pérdida completa de la función de la motilidad flagelar. La reducción del sistema puede que deje intacto el sistema SSTT, por cuanto el sistema SSTT tiene un requisito estructural con un umbral mínimo mucho más bajo. Sin embargo, el hecho de tener en su lugar la función SSTT no significa que la función flagelar vaya a estar también presente.
 
Ahora bien, uno podría construir sistemas funcionales de alto nivel, sistemas que exigen más y más requisitos estructurales mínimos necesarios, con el uso de sistemas preestablecidos más pequeños ya disponibles. Sin embargo, esta potencialidad no elimina la realidad de que los sistemas de más alto nivel tienen un mayor tamaño mínimo y mayores requisitos de especificidad antes que puedan hacerse realidad —incluso en el mínimo sentido {{sinreferencias}}. Todos los tipos de funciones tienen sus propios requisitos mínimos. Estos requisitos mínimos no son todos iguales. Y es esta diferencia en los requisitos mínimos lo que los distingue.
 
La verdadera cuestión es: ¿pueden construirse sistemas irreducibles usando componentes ya presentes en el fondo genético? Y, en tal caso, ¿es igualmente probable acabar con funciones a diferentes niveles de requisitos de tamaño y de especificidad?
 
Mantengo que los sistemas funcionales que exigen un mínimo de sólo unas pocas docenas de residuos de aminoácidos en una orientación bastante específica pueden evolucionar en un plazo relativamente breve (sólo unas pocas generaciones para una colonia de unos cuantos miles de millones de bacterias). Sin embargo, la probabilidad de que se puedan conseguir funciones de niveles progresivamente más elevados dentro de un plazo breve de tiempo disminuye exponencialmente con cada etapa arriba de esta escala de complejidad funcional irreducible.
 
Esta noción está respaldada en la literatura. Hay multitud de ejemplos de evolución «en acción» cuando se trata de funciones que exigen un mínimo de sólo unas cuantas docenas de residuos o si las posiciones de los residuos no tienen que ser demasiado especificadas (resistencia a los antibióticos, especificidad mejorada del sistema inmune, capacidad infectiva de fagos, etc.){{sinreferencias}}. Sin embargo, cuando se trata de funciones que exigen un mínimo de unos cuantos cientos de residuos bastante especificados operando de manera conjunta y simultánea (como en enzimas de proteínas únicas como la lactasa, la nilonasa, etc.), el número de ejemplos cae espectacularmente y la cantidad de fondos genéticos bacterianos capaces de evolucionar funciones a este nivel, incluso en un medio sumamente selectivo, cae también exponencialmente.
 
Cuando se llega al nivel de funciones que exigen meramente 1.000 residuos bastante especificados operando conjunta y simultáneamente, simplemente no hay ejemplos de evolución «en acción» mencionados en la literatura —ninguno en absoluto. Todo lo que tenemos al llegar a este punto son historias acerca de cómo los mecanismos evolutivos de mutación al azar y de selección basada en la función tienen que haber hecho la tarea. Es decir, simplemente cuentos basados en nada más que suposiciones. No hay observaciones reales de evolución en acción más allá de este punto —ni un solo ejemplo. Tampoco hay intentos serios de calcular las probabilidades de que la evolución se dé a tales niveles en el período propuesto de unos pocos miles de millones de años durante los que se supone que ha tenido lugar la evolución de la vida sobre esta Tierra.
 
Quizá, solo quizá, haya un pequeño problema con estos cuentos. Parece haber un problema de un vacío en expansión lineal entre lo que es y lo que pudiera ser. Cada paso ascendiendo la escala de complejidad funcional resulta en una expansión lineal del vacío no benéfico entre lo que existe en un fondo genético y la(s) siguiente(s) secuencia(s) genética(s) potencialmente benéfica(s) más cercana(s) en la inmensidad del «espacio de secuencias». Cada expansión lineal en distancia de vacío, según se define por la cantidad de cambios de los residuos que se tendrían que conseguir para llegar a la nueva función, resulta en un aumento exponencial en la cantidad de andadura aleatoria/pasos selectivos aleatorios que se necesitarían —como media. Naturalmente, esto resulta en un aumento exponencial en el tiempo medio preciso para encontrar una nueva secuencia benéfica funcional a niveles crecientemente elevados de complejidad funcional mínima.
 
==== Argumentos que refutan la Teoría de Complejidad irreducible de Behe ====
 
1-Hace mucho que se sabe que sistemas complejos pueden evolucionar de sistemas más simples que tengan menos partes, y que hayan desempeñado funciones limitadas u otras funciones distintas de las actuales. En el ejemplo del flagelo de la bacteria, Behe ignora que hay cilios o flagelos en otros microorganismos que, a pesar de tener menos partes que el flagelo de la bacteria, funcionan aunque con una gama más limitada de funciones que el flagelo bacteriano. Si las partes del mecanismo bioquímico del flagelo de la bacteria no pueden existir separadas de éste, ¿cómo se explica que la estructura de ese flagelo se encuentre en un organelo de la yersinia pestis?¿cómo se explica que, para remate, no sea usado para locomoción sino como dispositivo para inyectar toxinas?¿cómo se explica que algunas proteínas que llevan a cabo reacciones bioquímicas en los túbulos del flagelo bacteriano puedan funcionar separadas de éste desempeñando otras funciones?.
Línea 116 ⟶ 97:
 
Es posible que no haya otra teoría o concepto científico que esté tan sólidamente argumentado como lo está la evolución.
 
====Argumentos que apoyan la comlejidad irreducible====
 
El sistema que escogió Behe como ejemplo de un sistema de complejidad irreducible es el sistema de motilidad flagelar. Lo que sigue es una interesante reacción al concepto de complejidad irreducible enunciado por Behe —donde se sugiere que el sistema flagelar en realidad no es en absoluto irreduciblemente complejo:
 
"Los científicos de la corriente dominante consideran que este argumento ha sido en gran medida refutado a la luz de una investigación bastante reciente. Observan que se ha descubierto que el cuerpo basal del flagelo es similar al sistema de secreción de Tipo III (SSTT), una estructura semejante a una aguja que usan los microorganismos patogénicos como la salmonella para inyectar toxinas en células eucariotas vivas. La base de la aguja tiene muchos elementos en común con el flagelo, pero carece de la mayoría de las proteínas que hacen funcionar a un flagelo. Así, este sistema parece refutar la aseveración de que la eliminación de cualquiera de las piezas del flagelo lo convertiría en inservible. Esto ha llevado a [Kenneth] Miller a observar que «Las piezas de este sistema complejo supuestamente irreducible tienen en realidad funciones propias»".
 
Lo que «científicos de la corriente dominante» como Kenneth Miller no parecen comprender es que todos los sistemas funcionales tienen una complejidad irreducible con independencia de que pueda encontrarse o no un subsistema funcional dentro del sistema más amplio. El sistema de motilidad flagelar sigue exigiendo al menos 35 a 40 genes que produzcan una estructura con al menos 21 proteínas diferentes dispuestas en una forma específica, donde cada una de ellas exige un mínimo de cientos de residuos de aminoácidos dispuestos de una forma específica para que pueda conseguirse en absoluto la función de la motilidad flagelar —incluso de la manera más exigua. El mero hecho de que puedan encontrarse uno o más subsistemas dentro de los requisitos globales necesarios para construir un sistema de motilidad flagelar, como un sistema SSTT, no elimina la realidad de que el sistema flagelar sigue teniendo unos requisitos estructurales mínimos que no se pueden reducir más allá de un elevado umbral sin una pérdida completa de la función de la motilidad flagelar. La reducción del sistema puede que deje intacto el sistema SSTT, por cuanto el sistema SSTT tiene un requisito estructural con un umbral mínimo mucho más bajo. Sin embargo, el hecho de tener en su lugar la función SSTT no significa que la función flagelar vaya a estar también presente.
 
Ahora bien, uno podría construir sistemas funcionales de alto nivel, sistemas que exigen más y más requisitos estructurales mínimos necesarios, con el uso de sistemas preestablecidos más pequeños ya disponibles. Sin embargo, esta potencialidad no elimina la realidad de que los sistemas de más alto nivel tienen un mayor tamaño mínimo y mayores requisitos de especificidad antes que puedan hacerse realidad —incluso en el mínimo sentido {{sinreferencias}}. Todos los tipos de funciones tienen sus propios requisitos mínimos. Estos requisitos mínimos no son todos iguales. Y es esta diferencia en los requisitos mínimos lo que los distingue.
 
La verdadera cuestión es: ¿pueden construirse sistemas irreducibles usando componentes ya presentes en el fondo genético? Y, en tal caso, ¿es igualmente probable acabar con funciones a diferentes niveles de requisitos de tamaño y de especificidad?
 
Mantengo que los sistemas funcionales que exigen un mínimo de sólo unas pocas docenas de residuos de aminoácidos en una orientación bastante específica pueden evolucionar en un plazo relativamente breve (sólo unas pocas generaciones para una colonia de unos cuantos miles de millones de bacterias). Sin embargo, la probabilidad de que se puedan conseguir funciones de niveles progresivamente más elevados dentro de un plazo breve de tiempo disminuye exponencialmente con cada etapa arriba de esta escala de complejidad funcional irreducible.
 
Esta noción está respaldada en la literatura. Hay multitud de ejemplos de evolución «en acción» cuando se trata de funciones que exigen un mínimo de sólo unas cuantas docenas de residuos o si las posiciones de los residuos no tienen que ser demasiado especificadas (resistencia a los antibióticos, especificidad mejorada del sistema inmune, capacidad infectiva de fagos, etc.){{sinreferencias}}. Sin embargo, cuando se trata de funciones que exigen un mínimo de unos cuantos cientos de residuos bastante especificados operando de manera conjunta y simultánea (como en enzimas de proteínas únicas como la lactasa, la nilonasa, etc.), el número de ejemplos cae espectacularmente y la cantidad de fondos genéticos bacterianos capaces de evolucionar funciones a este nivel, incluso en un medio sumamente selectivo, cae también exponencialmente.
 
Cuando se llega al nivel de funciones que exigen meramente 1.000 residuos bastante especificados operando conjunta y simultáneamente, simplemente no hay ejemplos de evolución «en acción» mencionados en la literatura —ninguno en absoluto. Todo lo que tenemos al llegar a este punto son historias acerca de cómo los mecanismos evolutivos de mutación al azar y de selección basada en la función tienen que haber hecho la tarea. Es decir, simplemente cuentos basados en nada más que suposiciones. No hay observaciones reales de evolución en acción más allá de este punto —ni un solo ejemplo. Tampoco hay intentos serios de calcular las probabilidades de que la evolución se dé a tales niveles en el período propuesto de unos pocos miles de millones de años durante los que se supone que ha tenido lugar la evolución de la vida sobre esta Tierra.
 
Quizá, solo quizá, haya un pequeño problema con estos cuentos. Parece haber un problema de un vacío en expansión lineal entre lo que es y lo que pudiera ser. Cada paso ascendiendo la escala de complejidad funcional resulta en una expansión lineal del vacío no benéfico entre lo que existe en un fondo genético y la(s) siguiente(s) secuencia(s) genética(s) potencialmente benéfica(s) más cercana(s) en la inmensidad del «espacio de secuencias». Cada expansión lineal en distancia de vacío, según se define por la cantidad de cambios de los residuos que se tendrían que conseguir para llegar a la nueva función, resulta en un aumento exponencial en la cantidad de andadura aleatoria/pasos selectivos aleatorios que se necesitarían —como media. Naturalmente, esto resulta en un aumento exponencial en el tiempo medio preciso para encontrar una nueva secuencia benéfica funcional a niveles crecientemente elevados de complejidad funcional mínima.
 
== Referencias ==