Diferencia entre revisiones de «Cuark»

Contenido eliminado Contenido añadido
Sin resumen de edición
m Revertidos los cambios de 190.214.127.144 (disc.) a la última edición de 200.70.5.135
Línea 1:
{{Artículo bueno}}
Quark es una caricatura creada por el fisico ecuatoriano Dennisillo (illo-illo) Salazar. Quark vive en un mundo ideal con sus otros dos amigos Punki y Lepti. SIIIIIiiiiiiiiii!!!!!!!!!!!! JAJAJAJAA
{{otros usos|queso quark|el alimento}}
{{Ficha de partícula
| nombre = Quark
| imagen = Quark structure neutron.svg
| pie = Un [[neutrón]], compuesto por dos [[quark abajo]] (d) y un [[quark arriba]] (u).
| num_tipos = 6 ([[Quark arriba|''up'' (arriba)]], [[Quark abajo|''down'' (abajo)]], [[Quark encantado|''charm'' (encantado)]], [[Quark extraño|''strange'' (extraño)]], [[Quark cima|''top'' (cima)]], y [[Quark fondo|''bottom'' (''fondo'')]])
| clasificación =
| composición = [[Partícula elemental]]
| familia = [[Fermión]]
| grupo =
| generación = 1era., 2da, 3ra
| interacción = [[Gravedad]], </br>[[Interacción débil|Núclear débil]], </br>[[Interacción nuclear fuerte|Núclear fuerte]], </br>[[Interacción electromagnética|Electromagnetismo]]
| antipartícula = Antiquark {{sobrerrayado|q}}
| teorizada = [[Murray Gell-Mann]] (1964) <br />[[George Zweig]] (1964)
| descubierta = [[SLAC]] (~1968)
| símbolo = q
| masa =
| vida_media =
| decaimiento_de_partícula =
| carga_eléctrica = +2/3&nbsp;e, −1/3&nbsp;e
| radio_de_carga =
| dipolo_eléctrico =
| polarizabilidad_eléctrica =
| momento_magnético =
| polarizabilidad_magnética =
| carga_de_color = Sí
| espín = 1/2
| num_estados_espín =
| isospín =
| isospín_débil =
| hipercarga_fuerte =
| hipercarga_débil =
| paridad =
| paridad_c =
| paridad_g =
| paridad_r =
| simetrías_condensadas =
}}
En [[física de partículas]], los '''quarks''', junto con los [[leptón|leptones]], son los constituyentes fundamentales de la [[materia]] y las partículas más pequeñas que el hombre ha logrado identificar. Varias especies de quarks se combinan de manera específica para formar partículas tales como
[[protón|protones]] y [[neutrón|neutrones]].
 
Los quarks son las únicas partículas fundamentales que interactúan con las cuatro [[Interacciones fundamentales|fuerzas fundamentales]]. Son partículas de [[espín]] 1/2, por lo que son [[fermión|fermiones]]. Forman, junto a los leptones, la materia visible.
 
Hay seis tipos distintos de quarks que los físicos de partículas han denominado de la siguiente manera:
* [[Quark arriba|''up'' (arriba)]]
* [[Quark abajo|''down'' (abajo)]]
* [[Quark encantado|''charm'' (encantado)]]
* [[Quark extraño|''strange'' (extraño)]]
* [[Quark cima|''top'' (cima)]] y
* [[Quark fondo|''bottom'' (''fondo'')]].
Fueron nombrados arbitrariamente basados en la necesidad de nombrarlos de una manera fácil de recordar y usar, además de los correspondientes [[antiquark]]s. Las variedades extraña, encanto, fondo y cima son muy inestables y se desintegraron en una fracción de segundo después del [[Teoría del Big Bang|Big Bang]], pero los físicos de partículas pueden recrearlos y estudiarlos. Las variedades arriba y abajo sí se mantienen, y se distinguen entre otras cosas por su carga eléctrica.
 
En la naturaleza no se encuentran quarks aislados. Estos siempre se encuentran en grupos, llamados [[hadrón|hadrones]], de dos o tres quarks, conocidos como [[mesón|mesones]] y [[barión|bariones]] respectivamente. Esto es una consecuencia directa del [[confinamiento del color]]. En el año 2003 se encontró evidencia experimental de una nueva asociación de cinco quarks, los [[pentaquark]]<ref>{{cita web|url=http://arxiv.org/abs/hep-ex/0307083|título=Evidence for the positive-strangeness pentaquark|fechaacceso=08/01/2008|idioma=inglés|autor=The SAPHIR Collaboration, J. Barth, et al}}</ref>
aunque su existencia aún es controvertida.<ref>{{cita web|url=http://arxiv.org/abs/hep-ex/0503020|título=Review of the experimental evidence on pentaquarks and critical discussion|fechaacceso=08/01/2008|idioma=inglés|autor=Sonia Kabana}}</ref>
 
== Historia ==
=== Uso en el modelo estándar ===
{{VT|Modelo de quarks}}
 
[[Archivo:Murray Gell-Mann.jpg|200px|left|thumb|[[Murray Gell-Mann]], nacido en [[Nueva York]] en el año [[1929]], recibió el [[premio Nobel de Física]] en [[1969]] por su aporte en la teoría de las partículas atómicas.]]
La noción de quark teórica nace del intento de clasificar a los hadrones, ahora explicados gracias al [[modelo de quarks]]. [[Murray Gell-Mann]] y [[Kazuhiko Nishijima]] realizaron esa clasificación de manera independiente en 1964.<ref>{{cita web|url=http://www.particleadventure.org/spanish/quark_funs.html|título=Quarks|fechaacceso=08/01/2008}}</ref>
 
[[Archivo:Cuadro general partículas.png|thumb|Cuadro general con nombres y carga eléctrica: quarks y [[Leptón|leptones]].]]
[[Archivo:Bariones mesones.png|thumb|Diferencia entre los [[Barión|bariones]] y los [[Mesón|mesones]].]]
[[Archivo:Tamaña relativo materia.png|thumb|Tamaño relativo de las diferentes partículas atómicas.]]
Los quarks son la conclusión de los intentos para encontrar los fundamentos de la construcción de la [[materia]]. Con el triunfo de la teoría atómica en el [[siglo XIX]] se concluía que los átomos eran los componentes últimos de la materia y de ahí su nombre por ser ''indivisibles''. Con el [[modelo atómico de Rutherford]] se demostró que el [[átomo]] no era indivisible, constaba de un [[núcleo atómico|núcleo]] y de una [[nube electrónica]]. El núcleo atómico se demostró posteriormente que estaba conformado de protones y neutrones. Con sólo cinco partículas elementales, fuera de los protones, neutrones y electrones, en la década de 1930 comenzaron a aparecer los [[muón|muones]] de alta radiación y algunos [[neutrino]]s de forma indirecta. La confirmación de más mesones y bariones, primero en experimentos con alta radiación y luego en [[acelerador de partículas|aceleradores de partículas]], dieron la impresión de que nos enfrentábamos a un zoológico de partículas y fueron el impulso para buscar cada vez más partículas elementales.
 
El esquema usado por Gell-Mann para unir a las partículas era mediante su [[isospín]] y su [[extrañeza (física)|extrañeza]]. Utilizó una unidad simétrica derivada del [[álgebra]] actual, que se la conoce como una aproximación de la [[simetría quiral]] de la [[cromodinámica cuántica]] (QCD). Esta es una simetría global de sabor SU(3) que no debe confundirse con la [[simetría de gauge|simetría gaugeana]] de la cromodinámica cuántica. En este esquema, los [[mesón|mesones]] ligeros (de espín 0) y los [[barión|bariones]] (espín -1/2) estaban agrupados juntos en octetos de [[simetría de sabor]]. Una clasificación de los bariones de espín -3/2 en una representación 10 arrojó la predicción de una nueva partícula, la Ω<sup>-</sup>. Su descubrimiento en 1964 llevó a la aceptación de este modelo. La representación 3 que faltaba fue identificada como los quarks.{{sinreferencias}}
 
El esquema fue llamado por Gell-Mann como de [[ocho maneras]] (''eightfold way'' en inglés), una inteligente asociación de los octetos del modelo con los ocho caminos o maneras del [[budismo]].
 
=== Descubrimiento experimental ===
{{AP|Dispersión inelástica profunda}}
 
A mediados de la década de 1960 había un cierto consenso en que el protón poseía un tamaño aproximado de 10<sup>–15</sup> m con
una distribución suave de carga en su interior. Los análisis de ciertas propiedades de reacciones de altas energías de hadrones llevó a [[Richard Feynman]] a postular subestructuras de hadrones, a los que él llamo partones (porque eran parte de los hadrones).<ref>{{cita web|url=http://www.physics.ox.ac.uk/documents/PUS/dis/SLAC.htm|título=SLAC|fechaacceso=08/01/2008|idioma=inglés}}</ref>
 
La serie de experimentos en el [[SLAC]] (''Stanford Linear Accelerator Center'') entre 1967 y 1973 tenían como objetivo estudiar la dispersión electrón-protón y ver la distribución de carga en el protón<ref name=PN>[http://www.physicstoday.org/vol-44/iss-1/vol44no1p17-20a.pdf Premio Nobel por la primera evidencia de un quark]</ref>. Estos experimentos eran muy parecidos a los realizados por [[Experimento de Rutherford|Rutherford]] años atrás para confirmar la existencia del [[núcleo atómico]]. El SLAC es un [[acelerador lineal|acelerador de partículas lineal]] donde partículas como los electrones pueden alcanzar energías de hasta 50 GeV, lo suficiente para que estos puedan [[Dispersión inelástica profunda|traspasar]] [[nucleón|nucleones]].
 
El análisis teórico de las colisiones inelásticas que tuvieran lugar entre el electrón y el protón lo había trabajado [[James Bjorken]]. Este consideró varias hipótesis para explicar la función de forma de la dispersión. De todas ellas, la más especulativa era considerar al protón compuesto por partículas puntuales cargadas y con espín <math>1/2</math>. Al analizar los datos para diferentes cantidades de momento transferidos al protón, se comprobó que el ajuste de Bjorken con tal hipótesis era el adecuado<ref name=PN />. Se habían descubierto los quarks de manera experimental lo que permitió obtener el [[premio Nobel de Física]] de 1990 a [[Richard Edward Taylor|Taylor]], [[Henry Kendall|Kendall]] y [[Jerome Friedmann|Friedmann]], líderes de los experimentos en el SLAC.
 
Más adelante, otros experimentos de colisiones inelásticas con neutrinos hechas en el [[CERN]] sirvieron para confirmar los resultados del SLAC. Se confirmó que los partones de Feynmann y los quarks eran exactamente la misma cosa. Con la prueba de la [[libertad asintótica]] en la [[cromodinámica cuántica]] que realizaron en 1973 [[David Gross]], [[Frank Wilczek]] y [[David Politzer]], la conexión se hizo estable. A estos científicos se les concedió el [[premio Nobel de Física]] en el 2004 por este trabajo. Kendall dijo sobre el hallazgo:
 
{{cita|...el descubrimiento específico fue un descubrimiento. No sabíamos si estaría ahí, y tampoco nadie en este mundo - ni la gente que inventó el quark ni toda la comunidad teórica. Nadie podía decir especifica y unívocamente: hey amigos vayan por el quark. Esperamos que esté en los nucleones.<ref name=PN />}}
 
=== Diferentes sabores ===
Al principio se creía que sólo existían el [[quark arriba]], [[quark abajo|abajo]] y [[quark extraño|extraño]]. En 1970, [[Sheldon Glashow]], [[John Iliopoulos]] y [[Luciano Maiani]] postularon la existencia del quark encantado para impedir cambios no físicos de sabor en las [[desintegración débi|desintegraciones débiles]] que podrían aparecer en el [[modelo estándar]]. El descubrimiento del mesón [[Partícula J/ψ|J/ψ]] en 1974 llevó al reconocimiento de que éste estaba hecho de un quark encantado y su antiquark.<ref>{{cita web|url=http://hyperphysics.phy-astr.gsu.edu/hbase/particles/hadron.html#c3|título=Mesons|fechaacceso=08/01/2008|idioma=inglés}}</ref>
 
Luego, se planteó la hipótesis del quinto y sexto quark, llamados [[quark cima]] y [[quark fondo|fondo]]. La existencia de una [[tercera generación]] de quarks fue predicha por [[Makoto Kobayashi]] y [[Toshihide Maskawa]] en 1973, ellos se dieron cuenta que la [[violación CP|violación de la simetría CP]] por [[kaón|kaones]] neutros no podría acomodarse en el modelo estándar con las dos generaciones hasta ese momento existentes de quarks. El quark fondo fue descubierto en 1977 y el quark cima en 1996.<ref>{{cita web|url=http://www.astromia.com/glosario/quark.htm|título=Quark|fechaacceso=08/01/2008}}</ref>
 
== Significado de quark ==
[[Archivo:Elementos basicos materia.png|thumb|Los elementos básicos de la materia son 3.]]
La palabra fue originalmente designada por [[Murray Gell-Mann]] como una palabra sin sentido que rimaba con ''pork'',<ref>Gribbin, John. "Richard Feynman: A Life in Science" Dutton 1997, pg 194. </ref> pero sin ortografía.<ref>[http://www.takeourword.com/TOW111/page2.html Proveniencia de la palabra quark]</ref>
Después, él encontró la palabra «quark» en un libro de [[James Joyce]] titulado [[Finnegans Wake]] y de ahí se usó su ortografía:
{{cita|:Three quarks for Muster Mark! &nbsp;
:Sure he has not got much of a bark
:And sure any he has it's all beside the mark.|Del libro ''[[Finnegans Wake]]'' de [[James Joyce]]}}
 
Gell-Mann dijo sobre esto que<ref>{{cita libro|apellidos=Gell-Mann|nombre=Murray|título=EL QUARK Y EL JAGUAR|año=1995| editorial = Barcelona: Tusquet|id=84-7223-844-X}}</ref>
 
{{cita|En 1963, cuando asigné el nombre de quark a los constituyentes fundamentales de los nucleones, yo tenía el primer sonido, sin ortografía, que podría haber sido ''kwork''. Luego, en uno de sus ocasionales lecturas de Finnegans Wake, por James Joyce, me crucé con la palabra ''quark'' en la frase ''Three quarks for Muster Mark''. Entonces ''quark'' (que significa, por un lado, el grito de la gaviota) fue el claro intento de rimar con ''Mark'', como con ''bark'' y otras palabras parecidas. Yo tuve que encontrar una excusa para pronunciarla así como ''kwork''. Pero el libro representa el sueño de un publicano llamado Humphrey Chimpden Earwicker. Las palabras en el texto suelen proceder de varias fuentes a la vez, como la palabra ''portmanteau'' en ''Through the Looking Glass''. De vez en cuando, las frases que aparecen en el libro son determinadas para denominar a las bebidas en un bar. Yo argumenté, por lo tanto, que uno de los múltiples recursos de la frase ''Three quarks for Muster Mark'' podría ser ''Three quarts for Mister Mark'', en ese caso la pronunciación de "kwork" podría justificarse totalmente. En cualquier caso, el número tres encaja perfectamente en el camino como el quark apareció en la naturaleza.}}
 
La frase ''tres quarks'' (three quarks en inglés) encajaba particularmente bien (como se menciona en la cita) ya que en ese tiempo sólo había tres quarks conocidos y entonces los quarks estaban en grupos de tres en los [[barión|bariones]].
 
En el libro de Joyce, se da a las aves marinas ''tres quarks'', ''quark'' toma un significado como el grito de las [[gaviota]]s (probablemente [[onomatopeya]] como quack para los [[pato]]s). La palabra es también un juego de palabras en entre [[Munster (Irlanda)|Munster]] y su capital provincial [[Cork]].
 
== Generación ==
{{AP|Generación (física de partículas)}}
[[Archivo:Generaciones delamateria.png|thumb|Características de todas las partículas y fuerzas fundamentales conocidas.]]
Los físicos han ido separando a las partículas que, primero teóricas, han ido hallando experimentalmente en los [[acelerador de partículas|aceleradores de partículas]]. Las dividieron en ''[[generación (física de partículas)|generaciones]]'' de dos [[leptón|leptones]] y dos quarks. Entre ellos varía la masa que va aumentando de acuerdo al número de la generación, siendo la tercera la más pesada hasta el momento. El [[modelo estándar]] predice las tres generaciones de quarks y leptones que conocemos pero no podría descartarse del todo la posibilidad de una cuarta generación.
 
En el caso de los quarks tenemos como primera generación a los quarks [[quark arriba|arriba]] y [[quark abajo|abajo]]; los de segunda son los quarks [[quark encantado|encantado]] y [[quark extraño|extraño]]; y los de tercera generación son los quarks [[quark fondo|fondo]] y [[quark cima|cima]].
 
== Propiedades ==
 
Los quarks no se encuentran libres en la naturaleza sino que se agrupan formando [[hadrón|hadrones]]. Éstos se dividen en dos tipos:
*[[mesón (partícula)|Mesones]]: formados por un quark y un antiquark ([[pión|piones]], [[kaón|kaones]],...)
*[[barión|Bariones]]: formados por tres quarks (protones, neutrones,...)
 
Existen 6 tipos de quarks, cada uno con su sabor, su carga, su isospín débil y su masa (entre las propiedades más importantes). Una lista de estas propiedades para cada quark sería:<ref>{{cita web|url=http://www-cdf.fnal.gov/physics/new/top/2007/mass/tevcombination/|título=Summary of Top Mass Results - March 2007|fechaacceso=08/01/2008}}</ref><ref>{{cita web|url=http://pdg.lbl.gov/2005/listings/qxxx.html|título=La masa de los quarks|fechaacceso=08/01/2008|idioma=inglés}}</ref>
 
{|{{tablabonita}}
! Nombre
! Símbolo
! [[Generación (física de partículas)|Generación]]
! [[Isospín débil]]
! [[Sabor (física)|Sabor]]
! [[carga eléctrica|Carga]]
! [[Masa]]
|-----
|[[quark arriba|arriba (up)]]
| u
| 1
| +½
| I<sub>z</sub>=+½
| +⅔
| 1,5 – 4,0
|-bgcolor="#EFEFEF"
|[[quark abajo|abajo (down)]]
| d
| 1
| -½
| I<sub>z</sub>=-½
| -⅓
| 4 – 8
|-----
|[[quark extraño|extraño (strange)]]
| s
| 2
| -½
| S=-1
| -⅓
| 80 – 130
|-bgcolor="#EFEFEF"
|[[quark encantado|encantado (charm)]]
| c
| 2
| +½
| C=1
| +⅔
| 1150 – 1350
|-----
|[[quark bottom|fondo (bottom)]]
| b
| 3
| -½
| B'=-1
| -⅓
| 4100 – 4400
|-bgcolor="#EFEFEF"
|[[quark top|cima (top)]]
| t
| 3
| +½
| T=1
| +⅔
| 170900 ± 1800
|}
 
Junto a los [[leptón|leptones]], los quarks forman prácticamente toda la materia de la que estamos rodeados. En concreto la constituyen los dos primeros quarks ya que forman los protones y neutrones que a su vez forman los [[núcleo atómico|núcleos atómicos]].
 
=== Carga ===
{{VT|Carga eléctrica}}
 
La carga eléctrica de los quarks es -⅓ o +⅔ de la carga elemental. Por esto siempre las [[partículas compuestas]] (bariones y mesones) tienen una carga entera. Experimentalmente (por ejemplo en el [[experimento de la gota de aceite]] de Millikan) no hay información de cargas fraccionarias de partículas aisladas. La tercera parte de la carga en los hadrones es debido a la presencia de los quarks. Actualmente se desconoce por qué la suma de las cargas de los quarks en un protón se corresponde exactamente a la del electrón, un leptón, con signo opuesto.
 
=== Masa ===
 
Aunque si bien se habla de la [[masa]] de los quarks en el mismo sentido que la masa de cualquier otra partícula, la noción de masa para un quark es complicada por el hecho que los quarks no pueden encontrarse solos en la naturaleza. Como resultado, la noción de la masa de un quark es una construcción teórica que tiene sentido sólo cuando se especifica exactamente que se usará para definirla.
 
La [[simetría quiral]] aproximada de la [[cromodinámica cuántica]], por ejemplo, permite definir el radio entre varias masas de quarks a través de combinaciones de las masas de los octetos pseudoescalares de los mesones en el [[modelo de quarks]] por la teoría de perturbación quiral, tenemos:
:<math>\frac{m_u}{m_d}=0,56\qquad{\rm y}\qquad\frac{m_s}{m_d}=20,1.</math>
El hecho de que el [[quark arriba]] ''tenga'' masa es importante porque había un problema con la [[violación CP]] si éstos no tenían masa. Los valores absolutos de las masas son determinados por las reglas de suma de funciones espectrales (o también las reglas de suma de la cromodinámica cuántica).
 
Otro método para especificar las masas de los quarks fue usada por [[Murray Gell-Mann|Gell-Mann]] y Nishijima en el modelo de quarks que conectaba la masa del [[hadrón]] con la masa de los quarks. Estas masas, llamadas masas constituyentes de quarks, son considerablemente diferentes de las masas definidas anteriormente. Las masas constituyentes no tienen ningún significado dinámico posterior.
 
Por otro lado, las masas de los quarks más masivos, el [[quark charm|encantado]] y el [[quark bottom|fondo]], se obtuvieron de las masas de los hadrones que contenían un quark pesado (y un antiquark ligero o dos quarks ligeros) y del análisis de [[quarkonio]]s. Los cálculos del enrejado de la cromodinámica cuántica usando una teoría efectiva de quarks pesados o cronodinámica cuántica no relativista son usadas actualmente para determinar la masa de esos quarks.
 
El [[quark cima]] es lo suficientemente pesado que la perturbación de la [[QCD]] puede ser usada para determinar su masa. Antes de su descubrimiento en 1995, la mejor teoría estimaba que la masa del quark cima podía obtenerse del análisis global de test de precisión del [[modelo estándar]]. El quark cima, sin embargo, tiene la única cantidad de quarks que se desintegran antes de hadronizarse. Entonces, la masa puede ser directamente medida de los productos desintegrados resultantes. Estos sólo pueden ser hechos en el [[Tevatrón]] que es el único [[acelerador de partículas]] con la suficiente energía para producir quarks cima en abundancia.
 
=== Isospín débil ===
{{AP|Isospín débil}}
 
El valor de esta propiedad para los quarks es de 1/2, y su signo depende de qué tipo de quark es. Para los ''quarks tipo u'' (''[[quark up|u]]'', ''[[quark charm|c]]'' y ''[[quark top|t]]'') es de +1/2, mientras que para los otros, llamados ''quarks tipo d'' (''[[quark down|d]]'', ''[[quark strange|s]]'', ''[[quark bottom|b]]''), es de -1/2. De acuerdo con el isospín débil, un quark tipo ''u'' deberá desintegrarse para obtener un quark tipo ''d'' y viceversa. No se admiten desintegraciones entre quarks del mismo tipo. Las partículas que permiten estos cambios de carga del isospín débil son los [[bosones W y Z]].
 
=== Sabor ===
{{AP|Sabor (física)}}
 
Debido a la [[interacción débil]] todos los [[fermión|fermiones]], y en este caso los quarks, pueden cambiar de tipo; a este cambio se le denomina [[sabor (física)|sabor]].<ref>{{cita web|url=http://www.particleadventure.org/spanish/weaks.html|título=Interacción débil|fechaacceso=08/01/2008}}</ref> Los [[bosones W y Z]] son los que permiten el cambio de sabor en los quarks, estos bosones son los causantes de la interacción débil. Cada quark tiene un sabor diferente que interactuará con los bosones de una manera única.
 
El sabor de los quarks arriba y abajo es el [[isospín débil]], antes mencionado. El quark extraño, tendrá un número cuántico o sabor, homónimo, llamado [[extrañeza (física)|extrañeza]] y tiene el valor de -1. Para el quark encantado es [[quark charm|encantado]] y tiene el valor de 1; y así sucesivamente con los otros dos como se puede ver en la tabla anterior.
 
=== Carga de color ===
{{AP|Carga de color}}
 
Los quarks al ser fermiones deben seguir el [[principio de exclusión de Pauli]]. Este principio implica que los tres quarks en un barión deben estar en una combinación antisimétrica. Sin embargo la carga '''Q=2''' del barión '''Δ<sup>++</sup>''' (que es un cuarto del [[isospín]] '''I<sub>z</sub> &nbsp;=&nbsp; 3/2''' de los bariones) puede ser realizado sólo por quarks con [[espín]] paralelo. Esta configuración es simétrica bajo intercambio de quarks, esto implica que existe otro [[número cuántico]] interno para que pueda hacerse esa combinación antisimétrica. A esta propiedad, o número cuántico, se le denominó [[carga de color|color]]. El color no tiene nada que ver con la percepción de la frecuencia de la [[luz]], por el contrario, el color es la carga envuelta en la [[teoría de gauge]], más conocida como [[cromodinámica cuántica]].
 
El color es una simetría de gauge [[SU(3)]]. Los quarks están localizados en la [[Representación de grupo|representación fundamental]] 3 y por lo tanto tienen tres colores, análogo con los tres colores fundamentales rojo, verde y azul, de ahí viene su nombre. Es por eso que se suele decir que existen 18 tipos de quarks, 6 con sabor y cada uno con 3 colores.
 
== Subestructura ==
{{AP|Preón}}
 
Nuevas extensiones del [[modelo estándar de física de partículas]] indican que los quarks podrían estar compuestos de subestructuras. Esto asume que las partículas elementales del [[modelo estándar de física de partículas]] son partículas compuestas; estas hipótesis están siendo evaluadas, aunque actualmente no se ha descubierto tal estructura. Las llamadas subestructuras de los quarks se denominan preones.
== Antiquark ==
El ''antiquark'' es la [[antipartícula]] que corresponde a un quark. El número de tipos de quarks y antiquarks en la materia es el mismo. Se representan con los mismos símbolos que aquellos, pero con una barra encima de la letra correspondiente, por ejemplo, si un quark se representa <math>\mathrm{u}\,</math>, un antiquark se escribe <math>\bar{\mathrm{u}}</math>.
 
== Véase también ==
*[[Antiquark]]
*[[Física de partículas]]
*[[Fuerzas fundamentales]]
*[[Murray Gell-Mann]]
*[[Leon Max Lederman]]
*[[Preón]]
*[[Modelo estándar de física de partículas]]
 
== Notas ==
{{listaref|2}}
 
== Enlaces externos ==
{{commons|Particle physics}}
*[http://fisicarecreativa.net/cienpreguntas/tema057.html FisicaRecreativa.net] («¿Qué es un quark?», por Isaac Asimov).
*[http://www.particleadventure.org/spanish/index.html ParticleAdventure.org] (La Aventura de las Partículas, enlace muy ilustrativo sobre la física de partículas).
*[http://pdg.lbl.gov/ Pdg.lbl.gov] (Particle Data Group: página sobre datos de partículas; en inglés).
*[http://www.physics.ox.ac.uk/documents/PUS/dis/index.htm Physics.ox.ac.uk] (página muy ilustrativa de la Universidad de Oxford sobre el protón; en inglés).
{{Destacado|en}}
 
[[Categoría:Partículas elementales]]
[[Categoría:Quarks| ]]
 
[[ar:كوارك]]
[[ast:Quark]]
[[bg:Кварк]]
[[bn:কোয়ার্ক]]
[[bs:Kvark]]
[[ca:Quark]]
[[cs:Kvark]]
[[cy:Cwarc]]
[[da:Kvark (fysik)]]
[[de:Quark (Physik)]]
[[el:Κουάρκ]]
[[en:Quark]]
[[eo:Kvarko]]
[[et:Kvark]]
[[fa:کوارک]]
[[fi:Kvarkki]]
[[fr:Quark]]
[[ga:Cuarc]]
[[gl:Quark]]
[[he:קווארק]]
[[hr:Kvark]]
[[hu:Kvark]]
[[id:Quark]]
[[is:Kvarki]]
[[it:Quark (particella)]]
[[ja:クォーク]]
[[ko:쿼크]]
[[ku:Kuark]]
[[la:Quarcum]]
[[lt:Kvarkas]]
[[lv:Kvarki]]
[[mk:Кварк]]
[[ml:ക്വാര്‍ക്ക്]]
[[ms:Kuark]]
[[nl:Quark]]
[[nn:Kvark]]
[[no:Kvark]]
[[pl:Kwark]]
[[pt:Quark]]
[[ro:Quarc]]
[[ru:Кварк]]
[[scn:Quark]]
[[sh:Kvark]]
[[simple:Quark]]
[[sk:Kvark]]
[[sl:Kvark]]
[[sr:Кварк]]
[[su:Quark]]
[[sv:Kvark]]
[[ta:குவார்க்கு]]
[[th:ควาร์ก]]
[[tr:Kuark]]
[[uk:Кварк]]
[[ur:کوارک]]
[[uz:Kvark]]
[[vi:Quark]]
[[zh:夸克]]