Diferencia entre revisiones de «Tsunami»

Contenido eliminado Contenido añadido
Diegusjaimes (discusión · contribs.)
m Revertidos los cambios de 190.175.132.43 a la última edición de Javierito92
Línea 3:
Se calcula que el 90% de estos fenómenos son provocados por [[terremoto]]s, en cuyo caso reciben el nombre, más preciso, de ''maremotos tectónicos''.
La [[energía]] de un tsunami depende de su [[altitud|altura]] ([[amplitud de onda|amplitud]] de la [[onda (física)|onda]]) y de su [[velocidad]]. La energía total descargada sobre una zona costera también dependerá de la cantidad de picos que lleve el tren de ondas (en el reciente [[terremoto del Océano Índico de 2004|maremoto del Océano Índico]] hubo 7 picos). Este tipo de olas remueven una cantidad de agua muy superior a las olas superficiales producidas por el [[viento]].
== Términos ==
Antes, el término ''tsunami'' también sirvió para referirse a las olas producidas por [[huracán|huracanes]] y [[temporal (meteorología)|temporales]] que, como los maremotos, podían entrar tierra adentro, pero éstas no dejaban de ser olas superficiales producidas por el viento, aunque se trata aquí de un viento excepcionalmente poderoso.
 
Tampoco se deben confundir con la ola producida por la [[marea]] conocida como [[Macareo (física)|macareo]]. Éste es un fenómeno regular y mucho más lento, aunque en algunos lugares estrechos y de fuerte [[desnivel]] pueden generarse fuertes corrientes.
 
 
 
La mayoría de los tsunamis son originados por [[terremotos]] de gran magnitud bajo la superficie acuática. Para que se origine un maremoto el fondo marino debe ser movido abruptamente en sentido vertical, de modo que una gran masa de agua del [[océano]] es impulsada fuera de su equilibrio normal. Cuando esta masa de agua trata de recuperar su equilibrio genera olas. El tamaño del '''tsunami''' estará determinado por la magnitud de la deformación vertical del fondo marino entre otros parámetros como la profundidad del lecho marino. No todos los terremotos bajo la superficie acuática generan maremotos, sino sólo aquellos de magnitud considerable y su hipocentro se genera en el punto de profundidad adecuado.
 
Un maremoto tectónico producido en un [[fondo oceánico]] de 5 [[km]] de profundidad removerá toda la columna de agua desde el fondo hasta la superficie. El desplazamiento vertical puede ser tan sólo de centímetros; pero, si se produce a la suficiente profundidad, la velocidad será muy alta y la energía transmitida a la onda será enorme. Aun así, en alta mar la ola pasa casi desapercibida, ya que queda camuflada entre las olas superficiales. Sin embargo, destacan en la quietud del fondo marino, el cual se agita en toda su profundidad.
 
[[Archivo:Terremoto Sumatra 2004.gif|right|thumb|Maremoto de [[Sumatra]], en [[2004]].]]
La zona más afectada por este tipo de fenómenos es el [[Océano Pacífico]], debido a que en él se encuentra la zona más activa del planeta, el [[cinturón de fuego]]. Por ello, es el único [[océano]] con un sistema de alertas verdaderamente eficaz.
 
=== Física de los maremotos tectónicos ===
Los maremotos son destructivos a partir de sismos de [[magnitud]] 6,4, y son realmente destructivos a partir de 7 en la [[escala de Richter]].
 
La velocidad de las olas puede determinarse a través de la ecuación:
 
<math> v=\sqrt{g\cdot h}</math>,
 
donde '''''h''''' es la profundidad a la que se produce el [[sismo]] y '''''g''''', la gravedad terrestre (9,8&nbsp;[[m]]/s²).
 
A las profundidades típicas de 4-5&nbsp;km las olas viajarán a velocidades en torno a los 600&nbsp;[[kilómetro por hora|km/h]] o más. Su amplitud superficial o altura de la cresta '''''H''''' puede ser pequeña, pero la masa de agua que agitan es enorme, y por ello su velocidad es tan grande; y no sólo eso, pues la distancia entre picos también lo es. Es habitual que la [[longitud de onda]] de la cadena de maremotos sea de 100&nbsp;km, 200&nbsp;km o más.
 
El intervalo entre pico y pico ([[Período de oscilación|período]] de la [[onda (física)|onda]]) puede durar desde menos de diez minutos hasta media hora o más. Cuando la ola entra en la [[plataforma continental]], la disminución drástica de la profundidad hace que su velocidad disminuya y empiece a aumentar su altura. Al llegar a la costa, la velocidad habrá decrecido hasta unos 50&nbsp;km/h, mientras que la altura ya será de unos 3 a 30&nbsp;m, dependiendo del tipo de relieve que se encuentre. La distancia entre picos ([[longitud de onda]] '''''L''''') también se estrechará cerca de la costa.
 
Debido a que la onda se propaga en toda la columna de agua, desde la superficie hasta el fondo, se puede hacer la aproximación a la teoría lineal de la [[hidrodinámica]]. Así, el flujo de energía '''''E''''' se calcula como:
 
<math>E= \frac{1}{8} d \cdot g^{\left(3/2\right)} \cdot H^2 \cdot h^{\left(1/2\right)}</math>,
 
siendo '''''d''''' la densidad del [[fluido]].
 
La teoría lineal predice que las olas conservarán su energía mientras no rompan en la costa. La disipación de la energía cerca de la costa dependerá, como se ha dicho, de las características del relieve marino. La manera como se disipa dicha energía antes de romper depende de la relación '''''H/h''''', sobre la cual hay varias teorías. Una vez que llega a tierra, la forma en que la ola rompe depende de la relación '''''H/L'''''. Como L siempre es mucho mayor que H, las olas romperán como lo hacen las olas bajas y planas. Esta forma de disipar la energía es poco eficiente, y lleva a la ola a adentrarse tierra adentro como una gran [[marea]].
 
Cuanto más abrupta sea la costa, más altura alcanzará, pero seguirá teniendo forma de onda plana. Se puede decir que hay un trasvase de energía de velocidad a amplitud. La ola se frena pero gana altura. Pero la amplitud no es suficiente para explicar el poder destructor de la ola. Incluso en un maremoto de menos de 5&nbsp;m los efectos pueden ser devastadores. La ola es mucho más de lo que se ve. Arrastra una masa de agua mucho mayor que cualquier ola convencional, por lo que el primer impacto del frente de la onda viene seguido del empuje del resto de la masa de agua perturbada que presiona, haciendo que el [[mar]] se adentre más y más en tierra. Por ello, la mayoría de los maremotos tectónicos son vistos más como una poderosa [[riada]], en la cual es el mar el que inunda a la tierra, y lo hace a gran velocidad.
 
Antes de su llegada, el mar acostumbra a retirarse varios centenares de metros, como una rápida [[marea]] baja. Desde entonces hasta que llega la ola principal pueden pasar de 5 a 10 minutos. A veces, antes de llegar la cadena principal de maremotos, los que realmente arrasarán la zona, pueden aparecer "micromaremotos" de aviso. Así ocurrió el [[26 de diciembre]] de [[2004]] en las costas de [[Sri Lanka]] donde, minutos antes de la llegada de la ola fuerte, pequeños maremotos entraron unos cincuenta metros playa adentro, provocando el desconcierto entre los bañistas antes de que se les echara encima la ola mayor. Según testimonios, ''se vieron rápidas y sucesivas mareas bajas y altas, luego el mar se retiró por completo y solo se sintió el estruendo atronador de la gran ola que venía.''
 
Debido a que la energía de los maremotos tectónicos es casi constante, pueden llegar a cruzar océanos y afectar a costas muy alejadas del lugar del suceso. La trayectoria de las ondas puede modificarse por las variaciones del relieve [[abisal]], fenómeno que no ocurre con las olas superficiales. Los maremotos tectónicos, dado que se producen debido al desplazamiento vertical de una [[falla]], la onda que generan suele ser un tanto especial. Su [[frente de onda]] es recto en casi toda su extensión. Solo en los extremos se va diluyendo la energía al curvarse. La energía se concentra, pues, en un frente de onda recto, lo que hace que las zonas situadas justo en la dirección de la falla se vean relativamente poco afectadas, en contraste con las zonas que quedan barridas de lleno por la ola, aunque éstas se sitúen mucho más lejos. El peculiar frente de onda es lo que hace que la ola no pierda energía por simple [[dispersión geométrica]],¹ sobre todo en su zona más central. El fenómeno es parecido a una onda encajonada en un [[canal (ingeniería)|canal]] o [[río]]. La onda, al no poder dispersarse, mantiene constante su energía. En un maremoto sí existe, de hecho, cierta dispersión pero, sobre todo, se concentra en las zonas más alejadas del centro del frente de onda recto.
 
En la imagen animada del maremoto del Océano Índico [http://es.wikipedia.org/wiki/Imagen:2004_Indonesia_Tsunami.gif (Diagrama de la onda)] se puede observar cómo la onda se curva por los extremos y cómo [[Bangladesh]], al estar situado justo en la dirección de la falla fracturada, apenas sufre sus efectos, mientras que [[Somalia]], a pesar de encontrarse mucho más lejos, cae justo en la dirección de la zona central de la ola, que es donde la energía es mayor y se conserva mejor.
 
=== Dispersión de la energía debido al alargamiento del frente de onda ===
Sostiene el profesor [http://fluidos.pluri.ucm.es/~velarde Manuel García Velarde] que los maremotos son ejemplos paradigmáticos de este tipo especial de ondas no lineales conocidas como ''[[solitones]]'' u ''[[ondas solitarias]]''. El concepto de [[solitón]] fue introducido por los [[física|físicos]] [[N. Zabusky]] y [[M. Krustal]] en [[1965]], aunque ya habían sido estudiados, a finales del [[siglo XIX]], por [[D. Korteweg]] y [[G. de Vries]], entre otros.
 
El fenómeno físico (y [http://www.ma.hw.ac.uk/solitons concepto matemático]) de los [[solitones]] fue descrito, en el [[siglo XIX]], por [[J. S. Russell]] en [http://www.ma.hw.ac.uk/solitons/soliton1.html canales de agua] de poca profundidad, y son observables también en otros lugares. Manuel García Velarde dice:
 
{{cita|...en ríos (de varios metros de altura: [http://www.sequana-normandie.com/mascaret.htm mascaret] del [[río Sena]] o ''bore'' del [[río Severn]]) y en [[estrecho]]s (como en la [[pycnoclina]] del [[estrecho de Gibraltar]], donde pueden alcanzar hasta cien metros de amplitud aunque sean apenas perceptibles en la superficie del mar) o en el océano (maremoto es una ola gigantesca en un puerto que ocurre como etapa final de una onda solitaria que ha recorrido de tres a cuatro mil kilómetros a unos ochocientos kilómetros por hora, por ejemplo de Alaska a Hawái)". [http://www.uv.es/metode/anuario2002/149_2002.html]}}
 
[[Archivo:Earth-crust-cutaway-spanish.svg|thumb]]
 
=== Crust tsunamis ===
{{AP|Crust tsunami}}
 
En español ''maremoto de la corteza (terrestre)'', hace referencia a las consecuencias que tendría el impacto de un meteorito gigantesco, del orden de centenares de kilómetros contra la superficie de la [[Tierra]].
 
Por semejanza a los [[tsunamis]] convencionales en los que el agua del océano asciende formando una enorme [[ola]], en un crust tsunami se elevaría la [[corteza terrestre]], despegándose del [[manto terrestre|manto]].
 
== Otros tipos de maremotos ==