Método de Muller

algoritmo para calcular raíces de una función basado en una interpolación cuadrática

En matemáticas, el método de Muller[1]​ es un procedimiento de resolución numérica de ecuaciones no lineales que se basa en el método de la secante, pero que utiliza una aproximación cuadrática en lugar de una aproximación lineal. Esto ofrece una convergencia más rápida que el método de la secante. Una particularidad de este método es que puede determinar raíces complejas.

Historia

editar

Fue presentado en 1956 por el matemático estadounidense David E. Muller (1924-2008), en el entorno del creciente número de algoritmos numéricos que surgieron con la progresiva generalización del uso de los ordenadores.

Procedimiento

editar

El método de la secante define una relación de recurrencia basada en la interpolación lineal entre dos puntos. El método de Muller, por su naturaleza cuadrática, requiere tres puntos. Así, se parte de la relación siguiente:

 

Luego, se definen tres términos:

 
 
 

La relación de recurrencia para este método viene dada finalmente por:

 

La primera iteración requiere de tres puntos x0, x1 y x2, mejor cuanto más próximos a la solución buscada.[2]

Tasa de convergencia

editar

La velocidad de convergence del método de Muller es aproximadamente 1,84 frente a 1,62 para el método de la secante y 2 para el método de Newton.

Más precisamente, si ξ es una raíz simple de f (es decir, f (ξ) = 0 y f' (ξ) ≠ 0), esa f es tres veces continuamente diferenciable; y los puntos de partida x0, x1 y x2 se toman lo suficientemente cerca de ξ, entonces se comprueba que

 

donde p ≈ 1.84 es la raíz positiva de  .

Referencias

editar
  1. David E. Muller, A Method for Solving Algebraic Equations Using an Automatic Computer, Math. Comp. 10 (1956), 208-215
  2. Weisstein, Eric W. «Método de Muller». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 

Bibliografía

editar

Enlaces externos

editar