Transición hiperfina

En física atómica, una estructura hiperfina es una pequeña perturbación en los niveles de energía (o del espectro) de los átomos o moléculas debido a la interacción de un dipolo magnético, proveniente de la interacción del momento magnético nuclear con el campo magnético del electrón.

TeoríaEditar

De acuerdo con el pensamiento clásico, el electrón que se mueve alrededor del núcleo tiene un momento de dipolo magnético, causado porque este está cargado. La interacción de este momento de dipolo magnético con el momento magnético del núcleo (debido a su Espín) conlleva a la división entre hiperfinos.

Sin embargo, debido al spin del electrón, existe también división de hiperfinos para la capa-S de los electrones, la cual tiene un momento angular orbital cero. En este caso, la interacción de dipolo magnético es aún más fuerte, como la densidad de probabilidad de electrones no desaparecen en el interior del núcleo ( ).

UsosEditar

AstrofísicaEditar

 
La transición hiperfina como se muestra en la placa de Pioneer.

Como la división hiperfina es muy pequeña, las frecuencias de transición generalmente no se encuentran en las frecuencias ópticas, sino que están en el rango de frecuencias de radio o microondas (también llamadas submilimétricas).

La estructura hiperfina da la línea de 21 cm observada en las regiones HI en medio interestelar.

Carl Sagan y Frank Drake consideraron que la transición hiperfina del hidrógeno era un fenómeno suficientemente universal como para ser utilizado como unidad base de tiempo y longitud en la placa Pioneer y más tarde en el Disco de oro de las Voyager.

En astronomía submilimétrica, los receptores heterodinos se utilizan ampliamente para detectar señales electromagnéticas de objetos celestes, como núcleos de formación de estrellas u objetos estelares jóvenes. Las separaciones entre componentes vecinos en un espectro hiperfino de una transición rotacional observada suelen ser lo suficientemente pequeñas como para caber dentro de la banda de FI (frecuencia intermedia) del receptor. Dado que la profundidad óptica varía con la frecuencia, las relaciones de fuerza entre los componentes hiperfinos difieren de las de sus intensidades intrínsecas (u ópticamente delgadas) (estas son las llamadas anomalías hiperfinas, que a menudo se observan en las transiciones rotacionales de HCN [1]​.). Por tanto, es posible una determinación más precisa de la profundidad óptica. De esto podemos derivar los parámetros físicos del objeto.[2]

Espectroscopia nuclearEditar

En los métodos de espectroscopia nuclear, el núcleo se utiliza para sondear la estructura local de los materiales. Los métodos se basan principalmente en interacciones hiperfinas con los átomos e iones circundantes. Los métodos importantes son la resonancia magnética nuclear, la espectroscopia de Mössbauer y la correlación angular perturbada.

Tecnología nuclearEditar

El atómica láser de vapor de separación de isótopos proceso (SILVA) utiliza la constante de acoplamiento entre las transiciones ópticas en uranio-235 y uranio-238 para selectivamente foto ionizar- sólo los átomos de uranio-235 y luego separar las partículas ionizadas de los no ionizados. Los láseres de colorante ajustados con precisión se utilizan como fuentes de la radiación de longitud de onda exacta necesaria.

Uso para definir el segundo y el metro del Sistema InternacionalEditar

La transición de estructura hiperfina se puede usar para hacer un filtro de muesca de microondas con muy alta estabilidad, repetibilidad y factor Q, que por lo tanto se puede usar como base para relojes atómicos muy precisos. El término frecuencia de transición denota la frecuencia de radiación correspondiente a la transición entre los dos niveles hiperfinos del átomo, y es igual a f = ΔE/h , donde ΔE es la diferencia de energía entre los niveles y h es la constante de Planck. Normalmente, la frecuencia de transición de un isótopo particular de átomos de cesio o rubidio se utilizan como base para estos relojes.

Debido a la precisión de los relojes atómicos basados en la transición de estructura hiperfina, ahora se utilizan como base para la definición del segundo. Un segundo ahora se define como exactamente 9 192 631 770 ciclos de la frecuencia de transición de la estructura hiperfina de los átomos de cesio-133.

El 21 de octubre de 1983, la 17a CGPM definió el metro como la longitud del camino recorrido por la luz en el vacío durante un intervalo de tiempo de 1/299,792,458 de un segundo.[3][4]

Pruebas de precisión de electrodinámica cuánticaEditar

La división hiperfina en hidrógeno y en muonio se ha utilizado para medir el valor de la constante de estructura fina α. La comparación con las mediciones de α en otros sistemas físicos proporciona una prueba rigurosa de la electrodinámica cuántica.

Qubit en computación cuántica con trampa de ionesEditar

Los estados hiperfinos de un ion atrapado se utilizan comúnmente para almacenar qubits en la computación cuántica con trampa de iones . Tienen la ventaja de tener una vida útil muy larga, superando experimentalmente ~ 10 minutos (en comparación con ~ 1s para niveles electrónicos metaestables).

La frecuencia asociada con la separación de energía de los estados está en la región de microondas , lo que hace posible impulsar transiciones hiperfinas utilizando radiación de microondas. Sin embargo, en la actualidad no hay ningún emisor disponible que pueda enfocarse para dirigirse a un ion particular de una secuencia. En cambio, se puede usar un par de pulsos láser para impulsar la transición, haciendo que su diferencia de frecuencia (desafinación) sea igual a la frecuencia de transición requerida. Esta es esencialmente una transición Raman estimulada. Además, los gradientes de campo cercano se han aprovechado para abordar individualmente dos iones separados por aproximadamente 4,3 micrómetros directamente con radiación de microondas.[5]

ReferenciasEditar

  1. Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; et al. (2016). "Radiative Transfer of HCN: Interpreting observations of hyperfine anomalies". Monthly Notices of the Royal Astronomical Society. 459 (3): 2882–2993.
  2. Tatematsu, K.; Umemoto, T.; Kandori, R. (2004). «N2H+ Observations of Molecular Cloud Cores in Taurus». Astrophysical Journal 606 (1): 333-340. Bibcode:2004ApJ...606..333T. S2CID 118956636. arXiv:astro-ph/0401584. doi:10.1086/382862. 
  3. Taylor, B.N. and Thompson, A. (Eds.). (2008a). The International System of Units (SI). Appendix 1, p. 70. This is the United States version of the English text of the eighth edition (2006) of the International Bureau of Weights and Measures publication Le Système International d' Unités (SI) (Special Publication 330). Gaithersburg, MD: National Institute of Standards and Technology. Retrieved 18 August 2008.
  4. Taylor, B.N. and Thompson, A. (2008b). Guide for the Use of the International System of Units (Special Publication 811). Gaithersburg, MD: National Institute of Standards and Technology. Retrieved 23 August 2008.
  5. Warring, U.; Ospelkaus, C.; Colombe, Y.; Joerdens, R.; Leibfried, D.; Wineland, D.J. (2013). «Individual-Ion Addressing with Microwave Field Gradients». Physical Review Letters 110 (17): 173002 1-5. Bibcode:2013PhRvL.110q3002W. PMID 23679718. S2CID 27008582. arXiv:1210.6407. doi:10.1103/PhysRevLett.110.173002.