Usuario:Matiasleonelgiglio/TallerPerivitellin

Perivitellins are egg proteins found in the perivitelline fluid of many gastropod. They are multifunctional complexes providing to the developing embryo with nutrition, storage, protection from the environment, and defense against predation. [1]

Despite the central role perivitellins play in reproduction and development, there is little information in gastropod Molluscs. Most studies of perivitellins have been performed in eggs of Ampullaridae, a family of freshwater (Caenogastropoda) snails, notably the Pomacea genus, mostly those of P. canaliculata, P. scalaris and P. maculata. [2][3]

Synthesis

editar

Perivitellins are almost exclusively synthesized in the albumen gland (also known as albumen gland-capsule gland complex or uterine gland), an accessory gland from the female reproductive system. [4][5]​ This has been experimentally confirmed for ovorubin (PcOvo) and PcPV2, which were only found in the albumen gland with no extra-gland synthesis, circulation or storage. [6][7][8]​ During the reproductive season, these perivitellins are transferred to eggs and, then, are rapidly restored in the albumen gland, decreasing its total amount only after repeated ovipositions. [4][9]​ In Pomacea canaliculata snails, perivitellins would act, together with the polysaccharide galactogen, as limiting factor of reproduction. [4]

Types of perivitellins

editar

The first studies performed in P. canaliculata identified two proteins named perivitellin-1, PV1 or ovorubin (now PcPV1) and perivitellin-2 or PV2 massively accumulated in eggs, comprising 60-70% of total protein, respectively, and a heterogeneous fraction dubbed perivitellin-3 or PV3 fraction. [10]​ Recent proteomic analyses, however, identified a total of 34 PVF proteins from P. canaliculata, 38 in P. maculata, and 32 in P. diffusa perivitelline fluids. [11][12][13][14]

Perivitellin-1 or PcOvo (former ovorubin) and perivitellin-2 or PcPV2 are probably the best characterized from snails. [15][10][16][8][17][18][19][5]​ Both perivitellins are multimeric proteins with remarkable thermal stability up to 100°C and 60°C, respectively, and over a wide range of pH. [20][21]​ They are also highly resistant to the combined action of pepsin and trypsin proteases. [17][18][21]

The perivitelline fluid of P. scalaris contains two major perivitellins, of which only the pigmented one, scalarin or PsSC, which is structurally similar to PcOvo, has been characterized. [19][22][23]​ The perivitelline fluid of P. maculata is also similar, with two major perivitellins, PmPV1 and PmPV2, structurally and functionally similar to PcOvo and PcPV2, respectively. [24][25][26]

The rest of perivitellins (over 25) have been characterized at the transcriptomic and proteomic levels, but biochemical studies are still largely missing. [27]

Perivitellin functions

editar

Perivitellins provide nutrition, storage, defense against predation, and protection from the environment to the developing embryo.

A functional classification of the perivitellin sequences based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), classified them in “environmental information processing”, among which several immune proteins are included, “metabolism”, “organismal systems”, “cellular processes”, “other”, and a considerable number of “unknown” proteins.

The first functional studies performed in P. canaliculata, considered them mostly as storage proteins that provided energetic and structural precursors for the embryos, since they are consumed during development. [16]

Later research on PV1s (PcOvo, PmPV1, and PsSC) reported that their carotenoid cofactor, notably astaxanthin, serves as a potent antioxidant and provides the conspicuous reddish color to the eggs. [1][20][24][28]​ These carotenoproteins are also highly resistant to gastrointestinal digestion, withstand the passage through the digestive system without significant modifications; this characteristic was related to embryo defenses, deterring predators by lowering the nutritional value of the eggs. [8][22][25]​ PcOvo and PsSC also carry phosphate groups attached to serine residues that may serve as a phosphorous reserve for the embryo. [19]​ Unlike PcOvo and PmPV1, PsSC is also an active lectin that agglutinates bacteria and alters the gastrointestinal mucosa of rats, functions associated with embryo protection against both pathogens and predators. [19][23]

PV2s are toxins only found in P. canaliculata (PcPV2) and P. maculata (PmPV2) perivitelline fluid. [24][29][30]​ They are potent neurotoxins when intraperitoneally injected to mice, while exerting enterotoxic functions when ingested. [26][29][31]​ Each of the two dimeric units of either PcPV2 or PmPV2 consists of a carbohydrate-binding protein of the tachylectin family (acting as a targeting module) disulfide-linked to a pore-forming subunit of the Membrane Attack Complex and Perforin (MACPF) subfamily (toxic module). [18][26]​ These toxins bear a structural resemblance to botulinic and ricin heterodimeric toxins, the so-called “AB toxins” previously known only in bacteria and plants. Perivitellin-2 is also resistant to gastrointestinal digestion, which contributes to lowering the egg nutritional value. [18][31]

Finally, a recent study of P. canaliculata PV3 fraction identified and characterized two protease inhibitors from the Kunitz and Kazal families, a function also related to an antipredator defense since it would prevent predators to digest proteins from the eggs when ingested. [27]


  1. a b Heras, H.; Dreon, M.S.; Ituarte, S.; Pollero, R.J. (2007-07). «Egg carotenoproteins in neotropical Ampullariidae (Gastropoda: Arquitaenioglossa)». Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology (en inglés) 146 (1-2): 158-167. doi:10.1016/j.cbpc.2006.10.013. Consultado el 13 de agosto de 2020. 
  2. Hayes, Kenneth A.; Burks, Romi L.; Castro-Vazquez, Alfredo; Darby, Philip C.; Heras, Horacio; Martín, Pablo R.; Qiu, Jian-Wen; Thiengo, Silvana C. et al. (2015-04). «Insights from an Integrated View of the Biology of Apple Snails (Caenogastropoda: Ampullariidae)». Malacologia (en inglés) 58 (1-2): 245-302. ISSN 0076-2997. doi:10.4002/040.058.0209. Consultado el 14 de agosto de 2020. 
  3. Heras, Horacio; Dreon, Marcos Sebastián; Ituarte, Santiago; Pasquevich, M. Yanina; Cadierno, María Pilar (2017). «Apple snail perivitellins, multifunctional egg proteins». En Joshi, Ravindra C.; Cowie, Robert H.; Sebastian, Leocadio S., ed. Biology and management of invasive apple snails (en inglés). Philippine Rice Research Institute. p. 99-117. ISBN 978-621-8022-25-6. Consultado el 14 de agosto de 2020. 
  4. a b c Cadierno, M. P.; Saveanu, L.; Dreon, M. S.; Martín, P. R.; Heras, H. (2018-08). «Biosynthesis in the Albumen Gland-Capsule Gland Complex Limits Reproductive Effort in the Invasive Apple Snail Pomacea canaliculata». The Biological Bulletin (en inglés) 235 (1): 1-11. ISSN 0006-3185. doi:10.1086/699200. Consultado el 14 de agosto de 2020. 
  5. a b Sun, J.; Wang, M.; Wang, H.; Zhang, H.; Zhang, X.; Thiyagarajan, V.; Qian, P. Y.; Qiu, J. W. (2012). «De novo assembly of the transcriptome of an invasive snail and its multiple ecological applications». Molecular Ecology Resources (en inglés) 12 (6): 1133-1144. ISSN 1755-0998. doi:10.1111/1755-0998.12014. Consultado el 14 de agosto de 2020. 
  6. Dreon, M.; Lavarias, S.; Garin, C. F.; Heras, H.; Pollero, R. J. (15 de febrero de 2002). «Synthesis, distribution, and levels of an egg lipoprotein from the apple snail Pomacea canaliculata (Mollusca: Gastropoda)». The Journal of Experimental Zoology 292 (3): 323-330. ISSN 0022-104X. PMID 11857466. doi:10.1002/jez.10043. Consultado el 14 de agosto de 2020. 
  7. Dreon, Marcos S.; Heras, Horacio; Pollero, Ricardo J. (2003-01). «Metabolism of ovorubin, the major egg lipoprotein from the apple snail». Molecular and Cellular Biochemistry 243 (1-2): 9-14. ISSN 0300-8177. PMID 12619883. doi:10.1023/a:1021616610241. Consultado el 14 de agosto de 2020. 
  8. a b c Dreon, Marcos S.; Heras, Horacio; Pollero, Ricardo J. (21 de abril de 2004). «Characterization of the major egg glycolipoproteins from the perivitellin fluid of the apple snail Pomacea canaliculata». Molecular Reproduction and Development 68 (3): 359-364. ISSN 1040-452X. doi:10.1002/mrd.20078. Consultado el 14 de agosto de 2020. 
  9. Wijsman, Theodoras C.M.; van Wijck-Batenburg, Helma (1987-09). «Biochemical Composition of the Eggs of the Freshwater SnailLymnaea stagnalisand Oviposition-induced Restoration of Albumen Gland Secretion». International Journal of Invertebrate Reproduction and Development 12 (2): 199-212. ISSN 0168-8170. doi:10.1080/01688170.1987.10510317. Consultado el 14 de agosto de 2020. 
  10. a b Garin, Claudia F.; Heras, Horacio; Pollero, Ricardo J. (1996). «Lipoproteins of the egg perivitelline fluid of Pomacea canaliculata snails (Mollusca: Gastropoda)». Journal of Experimental Zoology (en inglés) 276 (5): 307-314. ISSN 1097-010X. doi:10.1002/(SICI)1097-010X(19961201)276:53.0.CO;2-S. Consultado el 14 de agosto de 2020. 
  11. Sun, Jin; Zhang, Huoming; Wang, Hao; Heras, Horacio; Dreon, Marcos S.; Ituarte, Santiago; Ravasi, Timothy; Qian, Pei-Yuan et al. (3 de agosto de 2012). «First Proteome of the Egg Perivitelline Fluid of a Freshwater Gastropod with Aerial Oviposition». Journal of Proteome Research 11 (8): 4240-4248. ISSN 1535-3893. doi:10.1021/pr3003613. Consultado el 14 de agosto de 2020. 
  12. Mu, Huawei; Sun, Jin; Cheung, Siu Gin; Fang, Ling; Zhou, Haiyun; Luan, Tiangang; Zhang, Huoming; Wong, Chris K. C. et al. (10 de febrero de 2018). «Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails». Journal of Proteomics (en inglés) 172: 36-48. ISSN 1874-3919. doi:10.1016/j.jprot.2017.11.002. Consultado el 14 de agosto de 2020. 
  13. Ip, Jack C. H.; Mu, Huawei; Zhang, Yanjie; Heras, Horacio; Qiu, Jian-Wen (2020). «Egg perivitelline fluid proteome of a freshwater snail: Insight into the transition from aquatic to terrestrial egg deposition». Rapid Communications in Mass Spectrometry (en inglés) 34 (7): e8605. ISSN 1097-0231. doi:10.1002/rcm.8605. Consultado el 14 de agosto de 2020. 
  14. Sun, Jin; Mu, Huawei; Ip, Jack C H; Li, Runsheng; Xu, Ting; Accorsi, Alice; Sánchez Alvarado, Alejandro; Ross, Eric et al. (12 de abril de 2019). «Signatures of Divergence, Invasiveness, and Terrestrialization Revealed by Four Apple Snail Genomes». Molecular Biology and Evolution 36 (7): 1507-1520. ISSN 0737-4038. doi:10.1093/molbev/msz084. Consultado el 14 de agosto de 2020. 
  15. Cheesman, D.F. (24 de diciembre de 1958). «Ovorubin, a chromoprotein from the eggs of the gastropod molluscPomacea canaliculata». Proceedings of the Royal Society of London. Series B - Biological Sciences 149 (937): 571-587. ISSN 2053-9193. doi:10.1098/rspb.1958.0093. Consultado el 14 de agosto de 2020. 
  16. a b Heras, Horacio; Garin, Claudia F.; Pollero, Ricardo J. (1998). «Biochemical composition and energy sources during embryo development and in early juveniles of the snail Pomacea canaliculata (Mollusca: Gastropoda)». Journal of Experimental Zoology (en inglés) 280 (6): 375-383. ISSN 1097-010X. doi:10.1002/(SICI)1097-010X(19980415)280:63.0.CO;2-K. Consultado el 14 de agosto de 2020. 
  17. a b Dreon, Marcos Sebastián; Ituarte, Santiago; Heras, Horacio (3 de diciembre de 2010). «The Role of the Proteinase Inhibitor Ovorubin in Apple Snail Eggs Resembles Plant Embryo Defense against Predation». PLoS ONE 5 (12): e15059. ISSN 1932-6203. doi:10.1371/journal.pone.0015059. Consultado el 14 de agosto de 2020. 
  18. a b c d Dreon, Marcos Sebastián; Frassa, María Victoria; Ceolín, Marcelo; Ituarte, Santiago; Qiu, Jian-Wen; Sun, Jin; Fernández, Patricia E.; Heras, Horacio (30 de mayo de 2013). «Novel Animal Defenses against Predation: A Snail Egg Neurotoxin Combining Lectin and Pore-Forming Chains That Resembles Plant Defense and Bacteria Attack Toxins». En van der Goot, F. Gisou, ed. PLoS ONE (en inglés) 8 (5): e63782. ISSN 1932-6203. PMC 3667788. PMID 23737950. doi:10.1371/journal.pone.0063782. Consultado el 14 de agosto de 2020. 
  19. a b c d Ituarte, S.; Dreon, M.S.; Pasquevich, M.Y.; Fernández, P.E.; Heras, H. (2010-09). «Carbohydrates and glycoforms of the major egg perivitellins from Pomacea apple snails (Architaenioglossa: Ampullariidae)». Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 157 (1): 66-72. ISSN 1096-4959. doi:10.1016/j.cbpb.2010.05.004. Consultado el 14 de agosto de 2020. 
  20. a b Dreon, Marcos S.; Ituarte, Santiago; Ceolín, Marcelo; Heras, Horacio (31 de julio de 2008). «Global shape and pH stability of ovorubin, an oligomeric protein from the eggs of Pomacea canaliculata». FEBS Journal 275 (18): 4522-4530. ISSN 1742-464X. doi:10.1111/j.1742-4658.2008.06595.x. Consultado el 14 de agosto de 2020. 
  21. a b Frassa, María Victoria; Ceolín, Marcelo; Dreon, Marcos S.; Heras, Horacio (2010-07). «Structure and stability of the neurotoxin PV2 from the eggs of the apple snail Pomacea canaliculata». Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics (en inglés) 1804 (7): 1492-1499. doi:10.1016/j.bbapap.2010.02.013. Consultado el 14 de agosto de 2020. 
  22. a b Ituarte, Santiago; Dreon, Marcos Sebastián; Ceolin, Marcelo; Heras, Horacio (20 de noviembre de 2012). «Agglutinating Activity and Structural Characterization of Scalarin, the Major Egg Protein of the Snail Pomacea scalaris (d’Orbigny, 1832)». En Gasset, Maria, ed. PLoS ONE (en inglés) 7 (11): e50115. ISSN 1932-6203. PMC 3502340. PMID 23185551. doi:10.1371/journal.pone.0050115. Consultado el 14 de agosto de 2020. 
  23. a b Ituarte, Santiago; Brola, Tabata Romina; Fernández, Patricia Elena; Mu, Huawei; Qiu, Jian-Wen; Heras, Horacio; Dreon, Marcos Sebastián (1 de junio de 2018). «A lectin of a non-invasive apple snail as an egg defense against predation alters the rat gut morphophysiology». En Rittschof, Daniel, ed. PLOS ONE (en inglés) 13 (6): e0198361. ISSN 1932-6203. PMC 5983499. PMID 29856808. doi:10.1371/journal.pone.0198361. Consultado el 14 de agosto de 2020. 
  24. a b c Pasquevich, M.Y.; Dreon, M.S.; Heras, H. (2014-03). «The major egg reserve protein from the invasive apple snail Pomacea maculata is a complex carotenoprotein related to those of Pomacea canaliculata and Pomacea scalaris». Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology (en inglés) 169: 63-71. doi:10.1016/j.cbpb.2013.11.008. Consultado el 14 de agosto de 2020. 
  25. a b Pasquevich, María Yanina; Dreon, Marcos Sebastián; Qiu, Jian-Wen; Mu, Huawei; Heras, Horacio (2017-12). «Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins». Scientific Reports (en inglés) 7 (1): 15848. ISSN 2045-2322. PMC 5696525. PMID 29158565. doi:10.1038/s41598-017-16185-9. Consultado el 14 de agosto de 2020. 
  26. a b c Giglio, M. L.; Ituarte, S.; Milesi, V.; Dreon, M. S.; Brola, T. R.; Caramelo, J.; Ip, J. C. H.; Maté, S. et al. (1 de agosto de 2020). «Exaptation of two ancient immune proteins into a new dimeric pore-forming toxin in snails». Journal of Structural Biology (en inglés) 211 (2): 107531. ISSN 1047-8477. doi:10.1016/j.jsb.2020.107531. Consultado el 14 de agosto de 2020. 
  27. a b Ituarte, Santiago; Brola, Tabata Romina; Dreon, Marcos Sebastián; Sun, Jin; Qiu, Jian-Wen; Heras, Horacio (2019-06). «Non-digestible proteins and protease inhibitors: implications for defense of the colored eggs of the freshwater apple snail Pomacea canaliculata». Canadian Journal of Zoology 97 (6): 558-566. ISSN 0008-4301. doi:10.1139/cjz-2018-0210. Consultado el 14 de agosto de 2020. 
  28. Dreon, Marcos S.; Schinella, Guillermo; Heras, Horacio; Pollero, Ricardo J. (1 de febrero de 2004). «Antioxidant defense system in the apple snail eggs, the role of ovorubin». Archives of Biochemistry and Biophysics 422 (1): 1-8. ISSN 0003-9861. PMID 14725852. doi:10.1016/j.abb.2003.11.018. Consultado el 14 de agosto de 2020. 
  29. a b Heras, Horacio; Frassa, M. Victoria; Fernández, Patricia E.; Galosi, Cecilia M.; Gimeno, Eduardo J.; Dreon, Marcos S. (1 de septiembre de 2008). «First egg protein with a neurotoxic effect on mice». Toxicon: Official Journal of the International Society on Toxinology 52 (3): 481-488. ISSN 0041-0101. PMID 18640143. doi:10.1016/j.toxicon.2008.06.022. Consultado el 14 de agosto de 2020. 
  30. Giglio, M.l.; Ituarte, S.; Pasquevich, M.y.; Heras, H. (12 de septiembre de 2016). «The eggs of the apple snail Pomacea maculata are defended by indigestible polysaccharides and toxic proteins». Canadian Journal of Zoology 94 (11): 777-785. ISSN 0008-4301. doi:10.1139/cjz-2016-0049. Consultado el 14 de agosto de 2020. 
  31. a b Giglio, Matías L.; Ituarte, Santiago; Ibañez, Andrés E.; Dreon, Marcos S.; Prieto, Eduardo; Fernández, Patricia E.; Heras, Horacio (2020). «Novel Role for Animal Innate Immune Molecules: Enterotoxic Activity of a Snail Egg MACPF-Toxin». Frontiers in Immunology (en english) 11. ISSN 1664-3224. doi:10.3389/fimmu.2020.00428. Consultado el 14 de agosto de 2020.