Anexo:Poliedros uniformes

Ejemplos de poliedros uniformes:
Sólido platónico: tetraedro
 
Poliedro uniforme estrellado: dodecadodecaedro romo

En geometría, un poliedro uniforme es un poliedro que tiene polígonos regulares como caras y es una figura isogonal (es decir, que es transitiva respecto a sus vértices, de forma que existe una isometría que permite aplicar un vértice cualquiera sobre cualquier otro). De ello se deduce que todos los vértices son congruentes y el poliedro tiene un alto grado de simetría rotacional y especular.[1]

Los poliedros uniformes se pueden dividir entre formas convexas con caras formadas por polígonos regurales convexos y aquellos cuyas caras tienen forma de estrella. Los poliedros estrellados tienen caras con forma de estrella o figras de vértice regulares o ambos tipos de elementos.

El listado incluye los siguientes poliedros:

Se comprobó en Sopov (1970) que solo existen 75 poliedros uniformes además de las infinitas familias de prismas y antiprismas. John Skilling descubrió un ejemplo degenerado pasado por alto, al relajar la condición de que solo dos caras pueden encontrarse solamente en una arista. Este es un poliedro uniforme degenerado en lugar de un poliedro uniforme, porque algunos pares de aristas coinciden.

No se incluyen:

Indexación editar

Son de uso común cuatro esquemas de numeración para los poliedros uniformes, que se distinguen por letras:

  • ['C] Coxeter et al., 1954, mostró las formas convexas como figuras 15 a 32; tres formas prismáticas, figuras 33–35; y las formas no convexas, figuras 36–92.
  • [W] Wenninger, 1974, tiene 119 figuras: 1–5 para los sólidos platónicos, 6–18 para los sólidos de Arquímedes, 19–66 para las formas estrelladas, incluidos los 4 poliedros regulares no convexos, y terminó con 67–119 para los poliedros uniformes no convexos.
  • [K] Kaleido, 1993: Las 80 figuras se agruparon por simetría: 1–5 como representantes de las infinitas familias de formas prismáticas con simetría diedral, 6–9 con simetría tetraédrica, 10–26 con simetría octaédrica, 27–80 con simetría icosaédrica.
  • [U] Mathematica, 1993, sigue la serie Kaleido con las 5 formas prismáticas movidas al final, de modo que las formas no prismáticas se convierten en 1–75.

Nombres de poliedros por el número de lados editar

Hay nombres geométricos genéricos para los poliedros más comunes. Por ejemplo, los cinco sólidos platónicos se denominan tetraedro, hexaedro, octaedro, dodecaedro e icosaedro, con 4, 6, 8, 12 y 20 lados respectivamente.

Tabla de poliedros editar

Las formas convexas se enumeran en orden de grado de configuración de vértices desde 3 caras/vértice en adelante, y en lados crecientes por cara. Este ordenamiento permite mostrar similitudes topológicas.

Poliedros uniformes convexos editar

Nombre Imagen Tipo de
Vértices
Símbolo
Wythoff
Simetría C# W# U# K# Vértices Aristas Caras Tipo de caras
Tetraedro    
3.3.3
3 | 2 3 Td C15 W001 U01 K06 4 6 4 4{3}
Prisma triangular    
3.4.4
2 3 | 2 D3h C33a U76a K01a 6 9 5 2{3}
+3{4}
Tetraedro truncado    
3.6.6
2 3 | 3 Td C16 W006 U02 K07 12 18 8 4{3}
+4{6}
Cubo truncado    
3.8.8
2 3 | 4 Oh C21 W008 U09 K14 24 36 14 8{3}
+6{8}
Dodecaedro truncado    
3.10.10
2 3 | 5 Ih C29 W010 U26 K31 60 90 32 20{3}
+12{10}
Cubo    
4.4.4
3 | 2 4 Oh C18 W003 U06 K11 8 12 6 6{4}
Prisma pentagonal    
4.4.5
2 5 | 2 D5h C33b U76b K01b 10 15 7 5{4}
+2{5}
Prisma hexagonal    
4.4.6
2 6 | 2 D6h C33c U76c K01c 12 18 8 6{4}
+2{6}
Prisma octogonal    
4.4.8
2 8 | 2 D8h C33e U76e K01e 16 24 10 8{4}
+2{8}
Prisma decagonal    
4.4.10
2 10 | 2 D10h C33g U76g K01g 20 30 12 10{4}
+2{10}
Prisma dodecagonal    
4.4.12
2 12 | 2 D12h C33i U76i K01i 24 36 14 12{4}
+2{12}
Octaedro truncado    
4.6.6
2 4 | 3 Oh C20 W007 U08 K13 24 36 14 6{4}
+8{6}
Cuboctaedro truncado    
4.6.8
2 3 4 | Oh C23 W015 U11 K16 48 72 26 12{4}
+8{6}
+6{8}
Icosidodecaedro truncado    
4.6.10
2 3 5 | Ih C31 W016 U28 K33 120 180 62 30{4}
+20{6}
+12{10}
Dodecaedro    
5.5.5
3 | 2 5 Ih C26 W005 U23 K28 20 30 12 12{5}
Icosaedro truncado    
5.6.6
2 5 | 3 Ih C27 W009 U25 K30 60 90 32 12{5}
+20{6}
Octaedro    
3.3.3.3
4 | 2 3 Oh C17 W002 U05 K10 6 12 8 8{3}
Antiprisma cuadrado    
3.3.3.4
| 2 2 4 D4d C34a U77a K02a 8 16 10 8{3}
+2{4}
Antiprisma pentagonal    
3.3.3.5
| 2 2 5 D5d C34b U77b K02b 10 20 12 10{3}
+2{5}
Antiprisma hexagonal    
3.3.3.6
| 2 2 6 D6d C34c U77c K02c 12 24 14 12{3}
+2{6}
Antiprisma octogonal    
3.3.3.8
| 2 2 8 D8d C34e U77e K02e 16 32 18 16{3}
+2{8}
Antiprisma decagonal    
3.3.3.10
| 2 2 10 D10d C34g U77g K02g 20 40 22 20{3}
+2{10}
Antiprisma dodecagonal    
3.3.3.12
| 2 2 12 D12d C34i U77i K02i 24 48 26 24{3}
+2{12}
Cuboctaedro    
3.4.3.4
2 | 3 4 Oh C19 W011 U07 K12 12 24 14 8{3}
+6{4}
Rombicuboctaedro    
3.4.4.4
3 4 | 2 Oh C22 W013 U10 K15 24 48 26 8{3}
+(6+12){4}
Rombicosidodecaedro    
3.4.5.4
3 5 | 2 Ih C30 W014 U27 K32 60 120 62 20{3}
+30{4}
+12{5}
Icosidodecaedro    
3.5.3.5
2 | 3 5 Ih C28 W012 U24 K29 30 60 32 20{3}
+12{5}
Icosaedro    
3.3.3.3.3
5 | 2 3 Ih C25 W004 U22 K27 12 30 20 20{3}
Cubo romo    
3.3.3.3.4
| 2 3 4 O C24 W017 U12 K17 24 60 38 (8+24){3}
+6{4}
Dodecaedro romo    
3.3.3.3.5
| 2 3 5 I C32 W018 U29 K34 60 150 92 (20+60){3}
+12{5}

Poliedros uniformes estrellados editar

Las formas que contienen solo caras convexas se enumeran en primer lugar, seguidas de las figuras con caras en forma de estrella.

Los poliedros uniformes | 5/2 3 3, | 5/2 3/2 3/2, | 5/3 5/2 3, | 3/2 5/3 3 5/2 y | (3/2) 5/3 (3) 5/2 tienen algunas caras que forman pares coplanarios. (Coxeter et al. 1954, págs. 423, 425, 426; Skilling 1975, pág. 123)

Nombre Imagen Símbolo
Wythoff
Figura
vértices
Simetría C# W# U# K# Vért. Aristas Caras Chi ¿Orien-
table?
Dens. Tipo caras
Octahemioctaedro   3/2 3 | 3  
6.3/2.6.3
Oh C37 W068 U03 K08 12 24 12 0   8{3}+4{6}
Tetrahemihexaedro   3/2 3 | 2  
4.3/2.4.3
Td C36 W067 U04 K09 6 12 7 1 No   4{3}+3{4}
Cubohemioctaedro   4/3 4 | 3  
6.4/3.6.4
Oh C51 W078 U15 K20 12 24 10 −2 No   6{4}+4{6}
Gran
dodecaedro
  5/2 | 2 5  
(5.5.5.5.5)/2
Ih C44 W021 U35 K40 12 30 12 −6 3 12{5}
Gran
icosaedro
  5/2 | 2 3  
(3.3.3.3.3)/2
Ih C69 W041 U53 K58 12 30 20 2 7 20{3}
Gran
icosidodecaedro
ditrigonal
  3/2 | 3 5  
(5.3.5.3.5.3)/2
Ih C61 W087 U47 K52 20 60 32 −8 6 20{3}+12{5}
Pequeño
rombihexaedro
  2 4 (3/2 4/2) |  
4.8.4/3.8/7
Oh C60 W086 U18 K23 24 48 18 −6 No   12{4}+6{8}
Pequeño
cubicuboctaedro
  3/2 4 | 4  
8.3/2.8.4
Oh C38 W069 U13 K18 24 48 20 −4 2 8{3}+6{4}+6{8}
Gran
rombicuboctaedro
  3/2 4 | 2  
4.3/2.4.4
Oh C59 W085 U17 K22 24 48 26 2 5 8{3}+(6+12){4}
Pequeño dodecahemi-
dodecaedro
  5/4 5 | 5  
10.5/4.10.5
Ih C65 W091 U51 K56 30 60 18 −12 No   12{5}+6{10}
Gran dodecahemi-
cosaedro
  5/4 5 | 3  
6.5/4.6.5
Ih C81 W102 U65 K70 30 60 22 −8 No   12{5}+10{6}
Pequeño icosihemi-
dodecaedro
  3/2 3 | 5  
10.3/2.10.3
Ih C63 W089 U49 K54 30 60 26 −4 No   20{3}+6{10}
Pequeño
dodecicosaedro
  3 5 (3/2 5/4) |  
10.6.10/9.6/5
Ih C64 W090 U50 K55 60 120 32 −28 No   20{6}+12{10}
Pequeño
rombidodecaedro
  2 5 (3/2 5/2) |  
10.4.10/9.4/3
Ih C46 W074 U39 K44 60 120 42 −18 No   30{4}+12{10}
Pequeño dodecicosi-
dodecaedro
  3/2 5 | 5  
10.3/2.10.5
Ih C42 W072 U33 K38 60 120 44 −16 2 20{3}+12{5}+12{10}
Rombicosaedro   2 3 (5/4 5/2) |  
6.4.6/5.4/3
Ih C72 W096 U56 K61 60 120 50 −10 No   30{4}+20{6}
Gran
icosicosi-
dodecaedro
  3/2 5 | 3  
6.3/2.6.5
Ih C62 W088 U48 K53 60 120 52 −8 6 20{3}+12{5}+20{6}
Prisma
pentagrámico
  2 5/2 | 2  
5/2.4.4
D5h C33b U78a K03a 10 15 7 2 2 5{4}+2{5/2}
Prisma
heptagrámico (7/2)
  2 7/2 | 2  
7/2.4.4
D7h C33d U78b K03b 14 21 9 2 2 7{4}+2{7/2}
Prisma
heptagrámico (7/3)
  2 7/3 | 2  
7/3.4.4
D7h C33d U78c K03c 14 21 9 2 3 7{4}+2{7/3}
Prisma
octagrámico
  2 8/3 | 2  
8/3.4.4
D8h C33e U78d K03d 16 24 10 2 3 8{4}+2{8/3}
Antiprisma pentagrámico   | 2 2 5/2  
5/2.3.3.3
D5h C34b U79a K04a 10 20 12 2 2 10{3}+2{5/2}
Antiprisma
pentagrámico
cruzado
  | 2 2 5/3  
5/3.3.3.3
D5d C35a U80a K05a 10 20 12 2 3 10{3}+2{5/2}
Antiprisma
heptagrámico (7/2)
  | 2 2 7/2  
7/2.3.3.3
D7h C34d U79b K04b 14 28 16 2 3 14{3}+2{7/2}
Antiprisma
heptagrámico (7/3)
  | 2 2 7/3  
7/3.3.3.3
D7d C34d U79c K04c 14 28 16 2 3 14{3}+2{7/3}
Antiprisma
heptagrámico cruzado
  | 2 2 7/4  
7/4.3.3.3
D7h C35b U80b K05b 14 28 16 2 4 14{3}+2{7/3}
Antiprisma
octagrámico
  | 2 2 8/3  
8/3.3.3.3
D8d C34e U79d K04d 16 32 18 2 3 16{3}+2{8/3}
Antiprisma
octagrámico cruzado
  | 2 2 8/5  
8/5.3.3.3
D8d C35c U80c K05c 16 32 18 2 5 16{3}+2{8/3}
Pequeño
dodecaedro
estrellado
  5 | 2 5/2  
(5/2)5
Ih C43 W020 U34 K39 12 30 12 −6 3 12{5/2}
Gran
dodecaedro
estrellado
  3 | 2 5/2  
(5/2)3
Ih C68 W022 U52 K57 20 30 12 2 7 12{5/2}
Dodeca-
dodecaedro
ditrigonal
  3 | 5/3 5  
(5/3.5)3
Ih C53 W080 U41 K46 20 60 24 −16 4 12{5}+12{5/2}
Pequeño
icosidodecaedro
ditrigonal
  3 | 5/2 3  
(5/2.3)3
Ih C39 W070 U30 K35 20 60 32 −8 2 20{3}+12{5/2}
Hexaedro
truncado
estrellado
  2 3 | 4/3  
8/3.8/3.3
Oh C66 W092 U19 K24 24 36 14 2 7 8{3}+6{8/3}
Gran
rombihexaedro
  2 4/3 (3/2 4/2) |  
4.8/3.4/3.8/5
Oh C82 W103 U21 K26 24 48 18 −6 No   12{4}+6{8/3}
Gran
cubicuboctaedro
  3 4 | 4/3  
8/3.3.8/3.4
Oh C50 W077 U14 K19 24 48 20 −4 4 8{3}+6{4}+6{8/3}
Gran dodecahemi-
dodecaedro
  5/3 5/2 | 5/3  
10/3.5/3.10/3.5/2
Ih C86 W107 U70 K75 30 60 18 −12 No   12{5/2}+6{10/3}
Pequeño dodecahemi-
cosaedro
  5/3 5/2 | 3  
6.5/3.6.5/2
Ih C78 W100 U62 K67 30 60 22 −8 No   12{5/2}+10{6}
Dodeca-
dodecaedro
  2 | 5 5/2  
(5/2.5)2
Ih C45 W073 U36 K41 30 60 24 −6 3 12{5}+12{5/2}
Gran icosihemi-
dodecaedro
  3/2 3 | 5/3  
10/3.3/2.10/3.3
Ih C85 W106 U71 K76 30 60 26 −4 No   20{3}+6{10/3}
Gran
icosidodecaedro
  2 | 3 5/2  
(5/2.3)2
Ih C70 W094 U54 K59 30 60 32 2 7 20{3}+12{5/2}
Cuboctaedro
cubitruncado
  4/3 3 4 |  
8/3.6.8
Oh C52 W079 U16 K21 48 72 20 −4 4 8{6}+6{8}+6{8/3}
Gran
cuboctaedro
truncado
  4/3 2 3 |  
8/3.4.6/5
Oh C67 W093 U20 K25 48 72 26 2 1 12{4}+8{6}+6{8/3}
Gran
dodecaedro
truncado
  2 5/2 | 5  
10.10.5/2
Ih C47 W075 U37 K42 60 90 24 −6 3 12{5/2}+12{10}
Pequeño dodecaedro
truncado
estrellado
  2 5 | 5/3  
10/3.10/3.5
Ih C74 W097 U58 K63 60 90 24 −6 9 12{5}+12{10/3}
Gran dodecaedro
truncado
estrellado
  2 3 | 5/3  
10/3.10/3.3
Ih C83 W104 U66 K71 60 90 32 2 13 20{3}+12{10/3}
Gran
icosaedro
truncado
  2 5/2 | 3  
6.6.5/2
Ih C71 W095 U55 K60 60 90 32 2 7 12{5/2}+20{6}
Gran
dodecicosaedro
  3 5/3(3/2 5/2) |  
6.10/3.6/5.10/7
Ih C79 W101 U63 K68 60 120 32 −28 No   20{6}+12{10/3}
Gran
rombidodecaedro
  2 5/3 (3/2 5/4) |  
4.10/3.4/3.10/7
Ih C89 W109 U73 K78 60 120 42 −18 No   30{4}+12{10/3}
Icosidodeca-
dodecaedro
  5/3 5 | 3  
6.5/3.6.5
Ih C56 W083 U44 K49 60 120 44 −16 4 12{5}+12{5/2}+20{6}
Pequeño dodecicosi-
dodecaedro
ditrigonal
  5/3 3 | 5  
10.5/3.10.3
Ih C55 W082 U43 K48 60 120 44 −16 4 20{3}+12{5/2}+12{10}
Gran dodecicosi-
dodecaedro
ditrigonal
  3 5 | 5/3  
10/3.3.10/3.5
Ih C54 W081 U42 K47 60 120 44 −16 4 20{3}+12{5}+12{10/3}
Gran
dodecicosi-
dodecaedro
  5/2 3 | 5/3  
10/3.5/2.10/3.3
Ih C77 W099 U61 K66 60 120 44 −16 10 20{3}+12{5/2}+12{10/3}
Pequeño icosicosi-
dodecaedro
  5/2 3 | 3  
6.5/2.6.3
Ih C40 W071 U31 K36 60 120 52 −8 2 20{3}+12{5/2}+20{6}
Rombidodeca-
dodecaedro
  5/2 5 | 2  
4.5/2.4.5
Ih C48 W076 U38 K43 60 120 54 −6 3 30{4}+12{5}+12{5/2}
Gran
rombicosi-
dodecaedro
  5/3 3 | 2  
4.5/3.4.3
Ih C84 W105 U67 K72 60 120 62 2 13 20{3}+30{4}+12{5/2}
Dodeca-
dodecaedro
icositruncado
  3 5 5/3 |  
10/3.6.10
Ih C57 W084 U45 K50 120 180 44 −16 4 20{6}+12{10}+12{10/3}
Dodeca-
dodecaedro
truncado
  2 5 5/3 |  
10/3.4.10/9
Ih C75 W098 U59 K64 120 180 54 −6 3 30{4}+12{10}+12{10/3}
Gran
icosidodecaedro
truncado
  2 3 5/3 |  
10/3.4.6
Ih C87 W108 U68 K73 120 180 62 2 13 30{4}+20{6}+12{10/3}
Dodeca-
dodecaedro
romo
  | 2 5/2 5  
3.3.5/2.3.5
I C49 W111 U40 K45 60 150 84 −6 3 60{3}+12{5}+12{5/2}
Dodeca-
dodecaedro
romo invertido
  | 5/3 2 5  
3.5/3.3.3.5
I C76 W114 U60 K65 60 150 84 −6 9 60{3}+12{5}+12{5/2}
Gran
icosidodecaedro
romo
  | 2 5/2 3  
34.5/2
I C73 W113 U57 K62 60 150 92 2 7 (20+60){3}+12{5/2}
Gran
icosidodecaedro
romo invertido
  | 5/3 2 3  
34.5/3
I C88 W116 U69 K74 60 150 92 2 13 (20+60){3}+12{5/2}
Gran
icosidodecaedro
retrorromo
  | 2 3/2 5/3  
(34.5/2)/2
I C90 W117 U74 K79 60 150 92 2 37 (20+60){3}+12{5/2}
Gran
dodecicosi-
dodecaedro
romo
  | 5/3 5/2 3  
33.5/3.3.5/2
I C80 W115 U64 K69 60 180 104 −16 10 (20+60){3}+(12+12){5/2}
Icosidodeca-
dodecaedro
romo
  | 5/3 3 5  
33.5.3.5/3
I C58 W112 U46 K51 60 180 104 −16 4 (20+60){3}+12{5}+12{5/2}
Pequeño icosicosi-
dodecaedro romo
  | 5/2 3 3  
35.5/2
Ih C41 W110 U32 K37 60 180 112 −8 2 (40+60){3}+12{5/2}
Pequeño icosicosi-
dodecaedro
retrorromo
  | 3/2 3/2 5/2  
(35.5/2)/2
Ih C91 W118 U72 K77 60 180 112 −8 38 (40+60){3}+12{5/2}
Gran
dirrombicosi-
dodecaedro
  | 3/2 5/3 3 5/2  
(4.5/3.4.3.
4.5/2.4.3/2)/2
Ih C92 W119 U75 K80 60 240 124 −56 No   40{3}+60{4}+24{5/2}

Caso especial editar

Nombre Imagen Símbolo
Wythoff
Figura
vértices
Simetría C# W# U# K# Vért. Aristas Caras Chi ¿Orien-
table?
Dens. Tipo caras
Gran dirrombi-
dodecaedro
  | (3/2) 5/3 (3) 5/2  
(5/2.4.3.3.3.4. 5/3.
4.3/2.3/2.3/2.4)/3
Ih 60 360 (*) 204 −96 No   120{3}+60{4}+24{5/2}

El gran dirrombidodecaedro birromo tiene 240 de sus 360 aristas coincidiendo en el espacio en 120 pares. Debido a esta degeneración de aristas, no siempre se considera un poliedro uniforme.

Clave de las columnas editar

  • Indexación uniforme: U01–U80 (el tetraedro con el ídice 1, prismas en 76+)
  • Indexación del software Kaleido: K01–K80 (Kn = Un–5 para n = 6 to 80) (prismas 1–5, tetraedro, etc. 6+)
  • Modelos de poliedro de Magnus Wenninger: W001-W119
    • 1–18: 5 regulares convexos y 13 semirregulares convexos
    • 20–22, 41: 4 regulares no convexos
    • 19–66: 48 estelaciones/compuestos especiales (los no regulares no incluidos en esta lista)
    • 67–109: 43 uniformes no convexos no romos
    • 110–119: 10 uniformes romos no convexos
  • Chi: la característica de Euler, χ. Los teselados uniformes en el plano corresponden a la topología de un toro, con característica de Euler cero.
  • Densidad: la densidad representa el número de vueltas de un poliedro alrededor de su centro. Esto se deja en blanco para poliedros que no son orientables y hemipoliedros (poliedros con caras que pasan por sus centros), para los cuales la densidad no está bien definida.
  • Nota sobre las imágenes de figuras de vértices:
    • Las líneas blancas del polígono representan el polígono de la "figura de vértice". Las caras coloreadas que se incluyen en los vértices de las figuras ayudan a ver sus relaciones. Algunas de las caras que se cruzan se dibujan visualmente de forma incorrecta porque no se intersecan visualmente correctamente para mostrar qué partes están por delante.

Véase también editar

Referencias editar

  1. Proceedings Of The Conference In Honour Of The 90th Birthday Of Freeman Dyson. World Scientific. 2014. pp. 343 de 500. ISBN 9789814590129. Consultado el 15 de agosto de 2022. 

Bibliografía editar

Enlaces externos editar