Abrir menú principal

Potencial de Lennard-Jones

Potencial de Lennard-Jones para un dímero de argón.

Un par de átomos o moléculas neutros están sujetos a dos fuerzas distintas en el límite de una gran separación y de una pequeña separación: una fuerza atractiva actúa a grandes distancias (fuerza de Van Der Waals, o fuerza de dispersión) y una fuerza repulsiva actuando a pequeñas distancias (el resultado de la sobreposición de los orbitales electrónicos, conocido como la repulsión de Pauli). El potencial de Lennard-Jones (también conocido como el potencial L-J, el potencial 6-12 o, con menor frecuencia, como el potencial 12-6) es un modelo matemático sencillo para representar este comportamiento.

Fue propuesto en 1924 por el matemático y físico teórico inglés John Lennard-Jones (1894-1954).[1]

FormulaciónEditar

El potencial de Lennard-Jones es de la forma:

 

donde:

  •   es la profundidad del potencial,
  •   es la distancia (finita) en la que el potencial entre partículas es cero y
  • r es la distancia entre partículas.

Estos parámetros pueden ser ajustados para reproducir datos experimentales o pueden ser deducidos de resultados muy precisos de cálculos de química cuántica. El término   describe la repulsión y el término   describe la atracción.

La función que describe la fuerza a la que están sujetas las partículas es opuesta al gradiente del potencial arriba descrito:

 

El potencial de Lennard-Jones es una aproximación. La forma del término que describe la repulsión no tiene ninguna justificación teórica; la fuerza repulsiva debe depender exponencialmente de la distancia, pero el término de la fórmula de L-J es más conveniente debido a la facilidad y eficiencia de calcular r12 como el cuadrado de r6. Su origen físico está relacionado al principio de exclusión de Pauli: cuando dos nubes electrónicas circulando los átomos se empiezan a sobreponer, la energía del sistema aumenta abruptamente. El exponente 12 fue elegido exclusivamente por su facilidad de cálculo.


Formas alternativasEditar

La función del potencial de Lennard-Jones comúnmente se escribe de la siguiente forma:

 

donde   =   es la distancia en la que el potencial se encuentra en un mínimo.

La formulación más sencilla, usada comúnmente por software de simulación, es:

 

donde:

  •  

Simulación de dinámica molecular: potencial truncadoEditar

En general, para ahorrar tiempo computacional, el potencial de Lennard-Jones es truncado en la distancia límite de  , donde

 

i.e., en  , el potencial LJ   es aproximadamente 1/60 de su valor mínimo   (profundidad del potencial).

Después de  , se le asigna el valor 0 al potencial computacional.

Por otro lado, para evitar una discontinuidad en  , como se muestra en la ecuación 1, el potencial de LJ es desplazado ligeramente hacia arriba, de tal forma que el potencial computacional sea 0 exactamente en la distancia límite  .

Potencial de MieEditar

El potencial de Lennard-Jones es un caso especial del potencial de Mie

 ,

ya propuesto en 1903 por el físico alemán Gustav Mie[2]

ReferenciasEditar

  1. Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society 1931, 43, 461-482.
  2. Potencial de Mie (en inglés).