En matemáticas, se dice que una variedad riemanniana es plana si su curvatura es cero en todo punto. Intuitivamente, una variedad plana es aquella que «se parece localmente» a un espacio euclídeo en términos de distancias y ángulos, por ejemplo, en que los ángulos interiores de un triángulo suman 180°.

El recubridor universal de una variedad plana completa es un espacio euclídeo. Esto puede usarse para probar el teorema de Bieberbach (1911) que dice que todas las variedades planas compactas están finitamente recubiertas por toros. El caso de dimensión 3 fue probado antes por Schoenflies (1891).

Ejemplos

editar

Las siguientes variedades pueden equiparse con una métrica plana. Nótese que esta puede no ser su métrica estándar (por ejemplo, la métrica plana del toro de dimensión 2 no es la métrica inducida por su embebimiento usual en  ).

Dimensión 1

editar

Dimensión 2

editar

Existen 17 orbifolds compactos de dimensión 2 con métricas planas (incluyendo el toro y la botella de Klein), que se corresponden con los 17 grupos de papeles pintados o grupos cristalográficos planos.

Dimensión 3

editar

Existen 6 ejemplos compactos orientables y 4 no orientables de variedades planas, todas ellas variedades de Seifert.

Dimensión mayor

editar

Véase también

editar

Referencias

editar
  • Bieberbach, L. (1912), «Über die Bewegungsgruppen der Euklidischen Räume II: Die Gruppen mit einem endlichen Fundamentalbereich», Mathematische Annalen 72 (3): 400-412, doi:10.1007/BF01456724 ..

Enlaces externos

editar