Base natural
En geometría diferencial, una base natural es un tipo base vectorial del espacio tangente a una variedad diferenciable que puede ser asociada naturalmente a un sistema de coordenadas curvilíneo.
Definición de base natural
editarDada una variedad diferenciable de dimensión n y un conjunto de n campos vectoriales definidos sobre un conjunto abierto A esa variedad tales que en cada punto forman una base vectorial del espacio tangente a la variedad, es una base natural si y sólo si existe una carta local o sistema de coordenadas local que cumpla alguna de las siguientes condiciones:
- Los campos vectoriales coinciden con las derivadas a lo largo de las curvas coordenadas asociadas a las coordenadas locales: .
- La base dual asociada a los n campos vectoriales en cada punto, está formada por 1-formas exactas, es decir, existen y una carta local, como la descrita anteriormente, tal que y .
Geometría euclídea
editarSiendo el conjunto de puntos de la variedad diferenciable encajada en un espacio eunclíde, en esta variedad se puede tratar mediante coordenadas generalizadas . La base natural o base del espacio tangente a la variedad queda descrita por medio de las derivadas parciales de la variedad respecto de las coordenadas generalizadas.