Abrir menú principal
La curva roja es una epicicloide trazada a medida que el pequeño círculo (radio r = 1) gira sobre la circunferencia de un círculo mayor (radio R = 3).

La epicicloide es la curva generada por la trayectoria de un punto perteneciente a una circunferencia (generatriz) que rueda, sin deslizamiento, por el exterior de otra circunferencia (directriz). Es un tipo de ruleta cicloidal.

EcuaciónEditar

Considerando la figura podemos escribir:

(1) 

(2) 

con   y, además, como la circunferencia rueda sin deslizamiento, los arcos l1 y l2 son iguales, i.e:  . De aquí se tiene que  

Sustituyendo β y γ en las ecuaciones [1] y [2] tenemos la ecuación paramétrica de la epicicloide:  

 

Casos particularesEditar

Cuando   es un número racional, i.e.,  , siendo p y q números enteros, las epicicloides son curvas algebraicas.

Cuando r1=r2, i.e,   obtenemos una cardioide.

Cuando r1=2r2, i.e,   obtenemos una nefroide.

EjemplosEditar

Véase tambiénEditar

Referencias en la WebEditar