Factorización aurifeuilleana

En teoría de números, una factorización aurifeuilleana, llamada así por Léon-François-Antoine Aurifeuille, es un tipo especial de factorización algebraica que proviene de factorizaciones no triviales de un polinomio ciclotómico sobre los números enteros.[1]​ Aunque los polinomios ciclotómicos en sí mismos son irreducibles sobre los números enteros, cuando se restringen a valores enteros particulares, pueden tener una factorización algebraica, como en los ejemplos que figuran a continuación.

Ejemplos editar

  • Los números de la forma   tienen la siguiente factorización aurifeuilleana (véase también la identidad de Sophie Germain):
 
  • Configurando   y  , se obtiene la siguiente factorización aurifeuilleana de  :[2]
 
  • Los números de la forma   o  , donde   con   un entero libre de cuadrados, tienen factorización aurifeuilleana si y solo si se cumple una de las siguientes condiciones:
    •   y  
    •   y  
Por lo tanto, cuando   con   un entero libre de cuadrados, y   es congruente a   módulo  , entonces si   es congruente a 1 mod 4,   tiene factorización aurifeuilleana. De lo contrario,   tiene factorización aurifeuilleana.
  • Cuando el número es de una forma particular (la expresión exacta varía con la base), se puede utilizar la factorización aurifeuilleana, que da un producto de dos o tres números. Las siguientes ecuaciones dan factores de Aurifeuillian para las bases del Proyecto de Cunningham como producto de F, L y M:[3]
Si se hacen L = CD, M = C + D, las factorizaciones aurifeuilleanas para bn ± 1 de la forma F * (CD) * (C + D) = F * L * M con las bases 2 ≤ b ≤ 24 (potencias perfectas excluidas, ya que una potencia de bn es también una potencia de b) son:

(Para los coeficientes de los polinomios para todas las bases libres de cuadrados hasta 199 y hasta 998, véase[4][5][6]​)

b Número (CD) * (C + D)= L * M F C D
2 24k + 2 + 1   1 22k + 1 + 1 2k + 1
3 36k + 3 + 1   32k + 1 + 1 32k + 1 + 1 3k + 1
5 510k + 5 - 1   52k + 1 - 1 54k + 2 + 3(52k + 1) + 1 53k + 2 + 5k + 1
6 612k + 6 + 1   64k + 2 + 1 64k + 2 + 3(62k + 1) + 1 63k + 2 + 6k + 1
7 714k + 7 + 1   72k + 1 + 1 76k + 3 + 3(74k + 2) + 3(72k + 1) + 1 75k + 3 + 73k + 2 + 7k + 1
10 1020k + 10 + 1   104k + 2 + 1 108k + 4 + 5(106k + 3) + 7(104k + 2)
+ 5(102k + 1) + 1
107k + 4 + 2(105k + 3) + 2(103k + 2)
+ 10k + 1
11 1122k + 11 + 1   112k + 1 + 1 1110k + 5 + 5(118k + 4) - 116k + 3
- 114k + 2 + 5(112k + 1) + 1
119k + 5 + 117k + 4 - 115k + 3
+ 113k + 2 + 11k + 1
12 126k + 3 + 1   122k + 1 + 1 122k + 1 + 1 6(12k)
13 1326k + 13 - 1   132k + 1 - 1 1312k + 6 + 7(1310k + 5) + 15(138k + 4)
+ 19(136k + 3) + 15(134k + 2) + 7(132k + 1) + 1
1311k + 6 + 3(139k + 5) + 5(137k + 4)
+ 5(135k + 3) + 3(133k + 2) + 13k + 1
14 1428k + 14 + 1   144k + 2 + 1 1412k + 6 + 7(1410k + 5) + 3(148k + 4)
- 7(146k + 3) + 3(144k + 2) + 7(142k + 1) + 1
1411k + 6 + 2(149k + 5) - 147k + 4
- 145k + 3 + 2(143k + 2) + 14k + 1
15 1530k + 15 + 1   1514k + 7 - 1512k + 6 + 1510k + 5
+ 154k + 2 - 152k + 1 + 1
158k + 4 + 8(156k + 3) + 13(154k + 2)
+ 8(152k + 1) + 1
157k + 4 + 3(155k + 3) + 3(153k + 2)
+ 15k + 1
17 1734k + 17 - 1   172k + 1 - 1 1716k + 8 + 9(1714k + 7) + 11(1712k + 6)
- 5(1710k + 5) - 15(178k + 4) - 5(176k + 3)
+ 11(174k + 2) + 9(172k + 1) + 1
1715k + 8 + 3(1713k + 7) + 1711k + 6
- 3(179k + 5) - 3(177k + 4) + 175k + 3
+ 3(173k + 2) + 17k + 1
18 184k + 2 + 1   1 182k + 1 + 1 6(18k)
19 1938k + 19 + 1   192k + 1 + 1 1918k + 9 + 9(1916k + 8) + 17(1914k + 7)
+ 27(1912k + 6) + 31(1910k + 5) + 31(198k + 4)
+ 27(196k + 3) + 17(194k + 2) + 9(192k + 1) + 1
1917k + 9 + 3(1915k + 8) + 5(1913k + 7)
+ 7(1911k + 6) + 7(199k + 5) + 7(197k + 4)
+ 5(195k + 3) + 3(193k + 2) + 19k + 1
20 2010k + 5 - 1   202k + 1 - 1 204k + 2 + 3(202k + 1) + 1 10(203k + 1) + 10(20k)
21 2142k + 21 - 1   2118k + 9 + 2116k + 8 + 2114k + 7
- 214k + 2 - 212k + 1 - 1
2112k + 6 + 10(2110k + 5) + 13(218k + 4)
+ 7(216k + 3) + 13(214k + 2) + 10(212k + 1) + 1
2111k + 6 + 3(219k + 5) + 2(217k + 4)
+ 2(215k + 3) + 3(213k + 2) + 21k + 1
22 2244k + 22 + 1   224k + 2 + 1 2220k + 10 + 11(2218k + 9) + 27(2216k + 8)
+ 33(2214k + 7) + 21(2212k + 6) + 11(2210k + 5)
+ 21(228k + 4) + 33(226k + 3) + 27(224k + 2)
+ 11(222k + 1) + 1
2219k + 10 + 4(2217k + 9) + 7(2215k + 8)
+ 6(2213k + 7) + 3(2211k + 6) + 3(229k + 5)
+ 6(227k + 4) + 7(225k + 3) + 4(223k + 2)
+ 22k + 1
23 2346k + 23 + 1   232k + 1 + 1 2322k + 11 + 11(2320k + 10) + 9(2318k + 9)
- 19(2316k + 8) - 15(2314k + 7) + 25(2312k + 6)
+ 25(2310k + 5) - 15(238k + 4) - 19(236k + 3)
+ 9(234k + 2) + 11(232k + 1) + 1
2321k + 11 + 3(2319k + 10) - 2317k + 9
- 5(2315k + 8) + 2313k + 7 + 7(2311k + 6)
+ 239k + 5 - 5(237k + 4) - 235k + 3
+ 3(233k + 2) + 23k + 1
24 2412k + 6 + 1   244k + 2 + 1 244k + 2 + 3(242k + 1) + 1 12(243k + 1) + 12(24k)
  • Los números de Lucas   tienen la siguiente factorización aurifeuilleana:[7]
 
donde   es el número de Lucas  -ésimo, y   es el  -ésimo término de la sucesión de Fibonacci.

Historia editar

En 1869, antes del descubrimiento de las factorizaciones aurifeuilleanas, el matemático francés Fortuné Landry[8][9]​ obtuvo mediante un tremendo esfuerzo manual la siguiente factorización en números primos:

 

Tres años más tarde, en 1871, Aurifeuille descubrió la naturaleza de esta factorización; el número   para  , con la fórmula de la sección anterior, se factoriza como:[2][8]

 

Por supuesto, la factorización completa de Landry se deriva de este hecho (quitando el factor obvio 5). La forma general de la factorización fue descubierta más tarde por Lucas.[2]

El número 536903681 es un ejemplo de una norma de Gauss-Mersenne.[9]

Referencias editar

Enlaces externos editar