Hidrocarburo aromático policíclico

Ilustración de un hidrocarburo aromático policíclico típico. En el sentido de las agujas del reloj, desde la zona superior izquierda: benzacefenantrileno, pireno y dibenzo (a, h)antraceno.

Un hidrocarburo aromático policíclico (HAP o PAH, por sus siglas en inglés) es un compuesto orgánico que se compone de anillos aromáticos simples que se han unido, y no contiene heteroátomos ni lleva sustituyentes.[1]​ Los HAP se encuentran en el petróleo, el carbón y en depósitos de alquitrán y también como productos de la utilización de combustibles (ya sean fósiles o biomasa). Como contaminantes han despertado preocupación debido a que algunos compuestos han sido identificados como carcinógenos, mutágenos y teratógenos.

También se encuentran en el medio interestelar, en cometas y en meteoritos, y son candidatos a moléculas básicas en el origen de la vida. En el grafeno el motivo HAP se extiende en grandes láminas bidimensionales.

Fuentes y distribución de HAPEditar

Los hidrocarburos aromáticos policíclicos se encuentran sobre todo en fuentes naturales como la creosota.[2][3]​ Pueden surgir de la combustión incompleta de la materia orgánica. También se pueden producir HAP de forma geológica mediante la transformación química de sedimentos orgánicos en combustibles fósiles como petróleo y carbón.[4]​ Se considera que los HAP son omnipresentes en el medio ambiente y pueden formarse a partir de fuentes de combustión naturales o artificiales.[5]​ Las fuentes predominantes de HAP en el medio ambiente proceden, por tanto, de la actividad humana: la quema de madera y la combustión de otros biocombustibles, como el estiércol o los residuos de cultivos, aportan más de la mitad de las emisiones de HAP globales, en particular debido al uso de biocombustibles en India y China.[6]​ En 2004, los procesos industriales y la extracción y el uso de los combustibles fósiles suponían un poco más de la cuarta parte de las emisiones de HAP globales, de las cuales las más importantes eran las emisiones de países industrializados, como los Estados Unidos.[6]​ Otra fuente importante son los incendios forestales.[6]​ Se han medido concentraciones de HAP en el agua, suelo y aire en exteriores considerablemente más altas en Asia, África y Latinoamérica que en Europa, Australia, los EE. UU. y Canadá.[6]

Los HAP suelen hallarse como parte de mezclas complejas.[4][7]​ La combustión que ocurre a temperaturas más bajas, como fumar tabaco o la quema de madera, suele generar HAP de masas moleculares más bajas, mientras que los procesos industriales a altas temperaturas suelen generar HAP con masas moleculares más altas.[7]

En medio acuosoEditar

La mayor parte de los HAP no se disuelven en agua, lo cual limita su propagación en el medio, aunque los sedimentos finos ricos en contenido orgánico sorben los HAP.[8][9][10][11]​ La solubilidad acuosa de los HAP disminuye de una forma más o menos logarítmica cuando se aumenta la masa molecular.[12]​ Los HAP de dos anillos, y en menor medida los HAP de tres anillos, se disuelven en agua, lo cual los hace más propensos a su captación y degradación biológica.[11][12][13]​ Es más, los HAP de entre dos y cuatro anillos se volatilizan lo suficiente como para estar presentes en la atmósfera principalmente en forma gaseosa, aunque puede que el estado físico de los HAP de cuatro anillos dependa de la temperatura.[14][15]​ En cambio, los compuestos que tengan cinco o más anillos tienen una solubilidad en agua y una volatilidad bajas y, por lo tanto, se encuentran principalmente en estado sólido, ligados a las partículas que se encuentran en suspensión en la contaminación atmosférica, a las partículas de los suelos o a las de los sedimentos.[11]​ Cuando se encuentran en estado sólido, estos compuestos son menos propensos a su captación y degradación biológica, lo cual aumenta su presencia en el entorno.[12][16]

En galaxiasEditar

Se ha descubierto que en la galaxia espiral NGC 5529 los HAP se encuentran presentes.

Exposición humana al PAHEditar

La exposición humana al PAH varía en distintas partes del mundo y depende de factores como los índices de tabaquismo, el tipo de combustibles usados al cocinar y los controles de contaminación en las centrales eléctricas, en los procesos industriales y en los vehículos.[4][6][17]​ En los países desarrollados que tienen controles de contaminación del aire y del agua estrictos, fuentes más limpias para cocinar (como por ejemplo, el gas y la electricidad frente al carbón o a los biocombustibles) y que prohíben fumar en lugares públicos suele haber niveles más bajos de exposición al HAP, mientras que en los países en vías de desarrollo y en los subdesarrollados suele haber niveles más altos.[4][6][17]​ Se ha demostrado en varios estudios independientes que las nubes de humo quirúrgico contienen HAP.[18]​ En el caso de los contaminantes en interiores, el humo quirúrgico debe ser tratado como un riesgo potencial muy serio para los 59 millones de profesionales de la salud de todo el mundo.

 
Una estufa a cielo abierto que quema madera para cocinar. El humo de combustibles sólidos como la madera es una fuente muy importante de HAP a nivel mundial.

La quema de combustibles sólidos como carbón y biocombustibles para cocinar y como calefacción en el hogar supone una fuente global de emisiones de HAP dominante que en países en vías de desarrollo produce altos niveles de exposición a partículas en el aire en interiores que contienen HAP, en particular en mujeres y niños que pasan más tiempo en casa o cocinando.[6][19]

En los países industriales, aquellas personas que fuman productos del tabaco o que son fumadores pasivos están entre los grupos más expuestos; el humo del tabaco contribuye al 90% de los niveles de HAP en interiores en las viviendas de personas fumadoras.[17]​ La población general en los países desarrollados se ve expuesta al PAH predominantemente a través de la dieta, en particular al hacer carne a la parrilla o ahumada o al consumir HAP depositados en los alimentos vegetales, especialmente en los vegetales de hoja ancha, durante su crecimiento.[20]​ Los PAH se encuentran por lo general en concentraciones bajas en el agua potable.[17]

 
Esmog en El Cairo. Las partículas de contaminación en el aire, entre las que se encuentra el esmog, son una causa de exposición humana al HAP importante.

Las emisiones de vehículos como coches y camiones pueden convertirse en una fuente importante de HAP en partículas de contaminación en el aire en exteriores.[4][6]​ Desde el punto de vista geográfico, las carreteras más grandes son fuentes de HAP, el cual se puede distribuir en la atmósfera o se puede depositar en sus cercanías.[21]​ Se estima que los convertidores catalíticos hacen que las emisiones de HAP de los vehículos a gasolina sean 25 veces más pequeñas.[4]

También se puede acabar expuesto al PAH en el trabajo, si este está relacionado con combustibles fósiles o sus derivados, con la quema de madera, con electrodos de carbono o con la exposición al humo diésel.[22][23]​ Entre las actividades industriales que pueden producir y distribuir HAP en el medio ambiente se encuentran la producción de aluminio, hierro y acero; la gasificación del carbón, la destilación de alquitrán, la extracción de aceite de esquisto; la producción de coque, creosota, negro de carbón y carburo de calcio; la pavimentación de las carreteras y la producción de asfalto; la producción de neumáticos de caucho; la producción o el uso de líquidos para trabajar el metal y la actividad del carbón o de las centrales eléctricas de gas natural.[4][22][23]

Salud humanaEditar

Compuestos HAPEditar

Compuesto químico Fórmula esqueletal Compuesto químico Fórmula esqueletal
Antraceno   Benzo[a]pireno  
Criseno   Coroneno  
Coranuleno   Naftaceno  
Naftaleno   Pentaceno  
Fenantreno   Pireno  
Trifenileno   Ovaleno  

AromaticidadEditar

Origen de la vidaEditar

ToxicidadEditar

Exposición al PAHEditar

Los Hidrocarburos Aromáticos Policíclicos (PAH), se forman durante la combustión incompleta de cualquier tipo de materia orgánica. Los PAHs están presentes en todo el medio ambiente, y la exposición a estas sustancias se puede dar en diversas situaciones. En general, la exposición no será a un solo PAH, sino a una mezcla de ellos.

En el medio marino su presencia se debe, fundamentalmente, a actividades antropogénicas relacionadas con la combustión de cualquier tipo de materia orgánica y/o el transporte y utilización de combustibles fósiles.

Se considera que la principal fuente de exposición humana a los PAH es la alimentación, debido a la formación de PAH durante la cocción o por contaminación ambiental de los alimentos.

Existen estudios que demuestran la carcinogenicidad de estos compuestos por ingestión, inhalación o por contacto sobre la piel. Debido a sus características hidrofóbicas, se asocian generalmente a partículas de sedimento o a los tejidos orgánicos de los organismos. Los organismos más complejos presentan una alta capacidad de metabolizar estos compuestos.[24][25][26]

Efectos tóxicos en el ser humanoEditar

Existe evidencia para afirmar que determinados PAHs son cancerígenos en seres humanos y animales. Las pruebas en personas provienen principalmente de estudios profesionales de los trabajadores que estuvieron expuestos a mezclas que contienen PAHs, como resultado de su participación en procesos tales como la producción de coque, material impermeabilizante para techos, refinado de petróleo, o la gasificación del carbón (por ejemplo, alquitrán de carbón, las emisiones de hornos de coque, hollín, esquisto y petróleo crudo). El cáncer asociado con la exposición a mezclas que contienen PAHs en los seres humanos se produce predominantemente en los pulmones y en la piel después de la inhalación y exposición dérmica, respectivamente. Alguna ingestión de PAHs probablemente es debida al tragar partículas que los contienen de la limpieza mucociliar de los pulmones.

Si se está expuesto a sustancias como PAHs, varios factores determinarán si se presentarán efectos dañinos en la salud y el tipo y la gravedad de los mismos. Estos factores incluyen la dosis (la cantidad), la duración (por cuánto tiempo), la ruta o vía de las cuales está expuesto (respirar, comer, beber, o contacto con la piel), las otras sustancias químicas a las cuales se está expuesto y sus características personales como la edad, sexo, estado nutricional, particularidades familiares, estilo de vida y estado de salud.

Los estudios en animales demuestran que los PAHs tienden a afectar a los tejidos que se multiplican rápidamente tales como la médula ósea, órganos linfoides, las gónadas, y el epitelio intestinal.

Los PAHs pueden ser dañinos para la salud bajo ciertas circunstancias. Varios de los PAHs, incluido el benzo [a] antraceno, benzo [a] pireno, benzo [b] fluoranteno, benzo [j] fluoranteno, benzo [k] fluoranteno, criseno, el dibenzo [a, h] antraceno y el indeno [1 2,3-c, d] pireno, han causado tumores en animales de laboratorio que respiraron aire con estas sustancias, cuando se ingirió, o cuando se tenían largos períodos de contacto de la piel con ellos.

Ratones alimentados con altos niveles de benzo [a] pireno (BaP) durante el embarazo tuvieron dificultades para reproducirse al igual que sus hijos, y su descendencia también mostró otros efectos nocivos, tales como defectos de nacimiento y el peso corporal disminuido. Los datos de estudios en animales indican que varios PAHs pueden inducir una serie de efectos adversos, tales como la inmunotoxicidad, genotoxicidad, carcinogenicidad y toxicidad para la reproducción (que afecta a la descendencia masculina y femenina), y, posiblemente, también pueden influir en el desarrollo de la aterosclerosis. El factor crítico de valoración para la evaluación del riesgo es la ampliamente documentada carcinogenicidad de varios PAHs.

Valores límite y de referenciaEditar

El Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, en su anexo I, establece un valor objetivo para el benzo(a)pireno de 1 ng/m³ para el 1 de enero de 2013, medido en la fracción PM10 como promedio de un año natural. El Instituto Nacional de Seguridad Ocupacional y Salud (NIOSH) llegó a la conclusión de que la exposición ocupacional a los productos del carbón puede aumentar el riesgo de cáncer de pulmón y cáncer de piel en los trabajadores. NIOSH estableció un límite recomendado de exposición en el trabajo, promedio ponderado en el tiempo (REL-TWA) para los productos de alquitrán de carbón de 0,1 milligramos de PAHs por metro cúbico de aire (0,1 mg/m³) durante una jornada de 10 horas, dentro de una semana laboral de 40 horas. La Conferencia Americana de Higienistas Industriales Gubernamentales (ACGIH) recomienda un límite de exposición ocupacional para los productos de alquitrán de carbón de 0,2 mg/m³ durante una jornada de 8 horas diarias, dentro de una semana laboral de 40 horas. La Administración de Seguridad y Salud Ocupacional (OSHA) ha establecido un límite legalmente exigible de 0,2 mg/m³ como promedio durante un período de exposición de 8 horas.

Aunque los alimentos se cree que son la principal fuente de exposición humana a los PAHs, parte de esta contaminación puede surgir de la contaminación del aire con PAHs. Los niveles de PAHs en el aire por lo tanto deben mantenerse tan bajos como sea posible. El indicador más apropiado para los PAHs cancerígenos en el aire parece ser la concentración de Benzo (a) Pireno, dado el conocimiento actual y la base de datos existente.

Para ello la OEHHA ha desarrollado procedimiento para evaluar las potencias relativas de los HAP en relación con el BaP proponiendo un factor de potencia equivalente cancerígena (PEF).[27]

PAH PEF
benzo[a]pireno 1,0
benzo[a]anthraceno 0,1
benzo[b]fluoranteno 0,1
benzo[j]fluoranteno 0,1
benzo[k]fluoranteno 0,1
dibenzo[a,j]acridina 0,1
dibenzo[a,h]acridina 0,1
7H-dibenzo[c,g]carbazol 1,0
dibenzo[a,e]pireno 1,0
dibenzo[a,h]pireno 10
dibenzo[a,i]pireno 10
dibenzo[a,l]pireno 10
indeno[1,2,3-cd]pireno 0,1
5-metilcriseno 1,0
1-nitropireno 0,1
4-nitropireno 0,1
1,6-dinitropireno 10
1,8-dinitropireno 1,0
6-nitrocriseno 10
2-nitrofluoreno 0,01
criseno 0,01

NIOSH estableció un límite de exposición ocupacional recomendado y un promedio ponderado de tiempo (REL-TWA) para los productos de alquitrán de hulla de 0.1 miligramos de HAPs por metro cúbico de aire (0,1 mg/m³) en una jornada laboral de 10 horas, durante una semana de trabajo de 40 horas. La Conferencia Americana de Higienistas Industriales de Gobierno (ACGIH, por sus siglas en inglés) recomienda un límite de exposición ocupacional para los productos del alquitrán de hulla de 0,2 mg/m³ en una jornada laboral de 8 horas, durante una semana de trabajo de 40 horas. La Administración de Seguridad y Salud Ocupacional (OSHA) ha establecido un límite de cumplimiento legal de 0,2 mg/m³ promediado durante una exposición de 8 horas.[28]

RecomendacionesEditar

Para un ciudadano es prácticamente imposible evitar su exposición a PAHs, pero si la puede disminuir controlando su exposición al humo del tabaco, y procurando que las combustiones en el interior de su vivienda sean las mínimas. Por otra parte el consumo de alimentos cocinados a altas temperaturas produce PAHs, por ello si consumimos alimentos preferentemente cocidos en vez de fritos, horneados, braseados la ingesta de PAHs será menor.

Véase tambiénEditar

ReferenciasEditar

  1. Fetzer, J. C. (2000). The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons. Nueva York: Wiley. 
  2. Sörensen, Anja; Wichert, Bodo. «Asphalt and Bitumen». Ullmann's Encyclopedia of Industrial Chemistry (en inglés). Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_169.pub2. 
  3. «QRPOIL:: | Bitumen | Bitumen». www.qrpoil.com (en inglés). Archivado desde el original el 4 de marzo de 2016. Consultado el 19 de julio de 2018. 
  4. a b c d e f g Ravindra, K.; Sokhi, R.; Van Grieken, R. (2008). «Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation». Atmospheric Environment (en inglés) 42 (13): 2895-2921. Bibcode:2008AtmEn..42.2895R. ISSN 1352-2310. doi:10.1016/j.atmosenv.2007.12.010. 
  5. Abdel-Shafy, Hussein I. (2016). «A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation». Egyptian Journal of Petroleum (en inglés) 25 (1): 107-123. doi:10.1016/j.ejpe.2015.03.011. 
  6. a b c d e f g h Ramesh, A.; Archibong, A.; Hood, D. B.; Guo, Z.; Loganathan, B. G. (2011). «Global environmental distribution and human health effects of polycyclic aromatic hydrocarbons». Global Contamination Trends of Persistent Organic Chemicals (en inglés). Boca Raton, FL: CRC Press. pp. 97-126. ISBN 978-1-4398-3831-0. 
  7. a b Tobiszewski, M.; Namieśnik, J. (2012). «PAH diagnostic ratios for the identification of pollution emission sources». Environmental Pollution (en inglés) 162: 110-119. ISSN 0269-7491. PMID 22243855. doi:10.1016/j.envpol.2011.10.025. 
  8. Walker, T. R.; MacAskill, D.; Rushton, T.; Thalheimer, A.; Weaver, P. (2013). «Monitoring effects of remediation on natural sediment recovery in Sydney Harbour, Nova Scotia». Environmental Monitoring and Assessment (en inglés) 185 (10): 8089-107. PMID 23512488. doi:10.1007/s10661-013-3157-8. 
  9. Walker, T. R.; MacAskill, D.; Weaver, P. (2013). «Environmental recovery in Sydney Harbour, Nova Scotia: Evidence of natural and anthropogenic sediment capping». Marine Pollution Bulletin (en inglés) 74 (1): 446-52. PMID 23820194. doi:10.1016/j.marpolbul.2013.06.013. 
  10. Walker, T. R.; MacAskill, N. D.; Thalheimer, A. H.; Zhao, L. (2017). «Contaminant mass flux and forensic assessment of polycyclic aromatic hydrocarbons: Tools to inform remediation decision making at a contaminated site in Canada». Remediation Journal (en inglés) 27 (4): 9-17. doi:10.1002/rem.21525. 
  11. a b c Choi, H.; Harrison, R.; Komulainen, H.; Delgado Saborit, J. (2010). «Polycyclic aromatic hydrocarbons». WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization. 
  12. a b c Johnsen, Anders R.; Wick, Lukas Y.; Harms, Hauke (2005). «Principles of microbial PAH degradation in soil». Environmental Pollution (en inglés) 133 (1): 71-84. ISSN 0269-7491. PMID 15327858. doi:10.1016/j.envpol.2004.04.015. 
  13. Mackay, D.; Callcott, D. (1998). «Partitioning and physical chemical properties of PAHs». En Neilson, A., ed. PAHs and Related Compounds. The Handbook of Environmental Chemistry (en inglés). Springer Berlin Heidelberg. pp. 325-345. ISBN 978-3-642-08286-3. doi:10.1007/978-3-540-49697-7_8. 
  14. Atkinson, R.; Arey, J. (1 de octubre de 1994). «Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens». Environmental Health Perspectives (en inglés) 102: 117-126. ISSN 0091-6765. JSTOR 3431940. PMC 1566940. PMID 7821285. doi:10.2307/3431940. 
  15. Srogi, K. (1 de noviembre de 2007). «Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review». Environmental Chemistry Letters (en inglés) 5 (4): 169-195. ISSN 1610-3661. PMC 5614912. PMID 29033701. doi:10.1007/s10311-007-0095-0. 
  16. Haritash, A. K.; Kaushik, C. P. (2009). «Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review». Journal of Hazardous Materials (en inglés) 169 (1–3): 1-15. ISSN 0304-3894. PMID 19442441. doi:10.1016/j.jhazmat.2009.03.137. 
  17. a b c d Choi, H.; Harrison, R.; Komulainen, H.; Delgado Saborit, J. (2010). «Polycyclic aromatic hydrocarbons». WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization. 
  18. Dobrogowski, Miłosz; Wesołowski, Wiktor; Kucharska, Małgorzata; Sapota, Andrzej; Pomorski, Lech (1 de enero de 2014). «Chemical composition of surgical smoke formed in the abdominal cavity during laparoscopic cholecystectomy – Assessment of the risk to the patient». International Journal of Occupational Medicine and Environmental Health (en inglés) 27 (2): 314-25. ISSN 1896-494X. PMID 24715421. doi:10.2478/s13382-014-0250-3. 
  19. Kim, K.-H.; Jahan, S. A.; Kabir, E. (2011). «A review of diseases associated with household air pollution due to the use of biomass fuels». Journal of Hazardous Materials (en inglés) 192 (2): 425-431. ISSN 0304-3894. PMID 21705140. doi:10.1016/j.jhazmat.2011.05.087. 
  20. Phillips, D. H. (1999). «Polycyclic aromatic hydrocarbons in the diet». Mutation Research/Genetic Toxicology and Environmental Mutagenesis (en inglés) 443 (1–2): 139-147. ISSN 1383-5718. PMID 10415437. doi:10.1016/S1383-5742(99)00016-2. 
  21. Srogi, K. (2007). «Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review». Environmental Chemistry Letters (en inglés) 5 (4): 169-195. ISSN 1610-3661. PMC 5614912. PMID 29033701. doi:10.1007/s10311-007-0095-0. 
  22. a b Boffetta, P.; Jourenkova, N.; Gustavsson, P. (1997). «Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons». Cancer Causes & Control (en inglés) 8 (3): 444-472. ISSN 1573-7225. doi:10.1023/A:1018465507029. 
  23. a b Wagner, M.; Bolm-Audorff, U.; Hegewald, J.; Fishta, A.; Schlattmann, P.; Schmitt, J.; Seidler, A. (2015). «Occupational polycyclic aromatic hydrocarbon exposure and risk of larynx cancer: a systematic review and meta-analysis». Occupational and Environmental Medicine (en inglés) 72 (3): 226-233. ISSN 1470-7926. PMID 25398415. doi:10.1136/oemed-2014-102317. Consultado el 13 de abril de 2015. 
  24. Baars, A.J. (marzo de 2001). «Re-evaluation of human-toxicological maxi- mum permissible risk levels». RIVM. Consultado el 13 de noviembre de 2016. 
  25. Alonso Díaz, Alberto (Enero de 2016). «Hidrocarburos aromáticos policíclicos (HAP)». SECRETARIA DE ESTADO DE COMERCIO DE VALENCIA. Consultado el 13 de noviembre de 2016. 
  26. Viñas, Lucía; Bellas, Juan. «ESTRATEGIA MARINA DEMARCACIÓN MARINA NORATLÁNTICA PARTE IV. DESCRIPTORES DEL BUEN ESTADO AMBIENTAL DESCRIPTOR 8: CONTAMINANTES Y SUS EFECTOS EVALUACIÓN INICIAL Y BUEN ESTADO AMBIENTAL». MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE. Consultado el 13 de noviembre de 2016. 
  27. «Hidrocarburos Aromaticos Policiclicos». Servicio murciano de salud. Noviembre de 2016. Consultado el 13 de noviembre de 2016. 
  28. «Resúmenes de Salud Pública - Hidrocarburos aromáticos policíclicos (HAP) [Polycyclic Aromatic Hydrocarbons (PHA)]». 6 de mayo de 2016. Consultado el 13 de noviembre de 2016. 

Enlaces externosEditar