Abrir menú principal
Imagen obtenida por microscopía electrónica del tejido pulmonar de un mamífero, se visualizan dos mitocondrias.

Las mitocondrias son orgánulos celulares encargados de suministrar la mayor parte de la energía necesaria para la actividad celular (respiración celular).[1]​ Actúan como centrales energéticas de la célula y sintetizan ATP a expensas de los carburantes metabólicos (glucosa, ácidos grasos y aminoácidos). La mitocondria presenta una membrana exterior permeable a iones, metabolitos y muchos polipéptidos.[2]​ Eso se debe a que contiene proteínas que forman poros llamados porinas o VDAC (canal aniónico dependiente de voltaje), que permiten el paso de moléculas de hasta 10 kDa de masa[3]​ y un diámetro aproximado de 2 nm.

Índice

Descubrimiento de la mitocondriaEditar

El descubrimiento de las mitocondrias fue un hecho colectivo. El gran número de términos que se refieren a este orgánulo es prueba de ello: Blefaroplasto, condrioconto, condriómitos, condroblastos, condriosomas, condriosferas, fila, gránulos fucsinofílicos, Korner, Fadenkörper, mitogel, cuerpos parabasales, vermículas, sarcosomas, cuerpos intersticiales, plasmosomas, plastocondrios, bioblastos. Cowdry intentó en 1918, en un trabajo luego citado por Lehninger, sistematizar y unificar todos los términos.[4]

Probablemente las primeras observaciones se deben al botánico suizo Albert von Kölliker, quien en 1880-1888 anotó la presencia de unos gránulos en células musculares de insectos a los que denominó sarcosomas. Llegó incluso a la conclusión de que presentaban membrana.[5]​ En 1882, el alemán Walther Flemming descubrió una serie de inclusiones a las que denominó fila.[6]​ En 1884 también fueron observados por Richard Altmann, quien más tarde en su obra publicada en Leipzig Die Elementarorganismen describe una serie de corpúsculos que observa mediante una tinción especial que incluye fucsina. Especula que se trata de una suerte de parásitos independientes, con su propio metabolismo y los denomina bioblastos. El hallazgo fue rechazado como un artefacto de la preparación, y sólo más tarde fue reconocido como mitocondrias por N.H. Cowdry (EE.UU.-1916).[7]​ También los «plastídulos» del protozoólogo italiano Leopoldo Maggi podrían tratarse de observaciones tempranas de mitocondrias.[8]

Sin embargo, el nombre de mitocondria, que es el que alcanzó mayor fortuna, se debe a Carl Benda, quien en 1889 denominó así a unos gránulos que aparecían con gran brillo en tinciones de cristal violeta y alizarina, y que anteriormente habían sido denominados «citomicrosomas» por Velette St. George.[7][5]​ En 1904 F. Meves confirma su presencia en una planta, concretamente en células del tapete de la antera de Nymphaea, y en 1913 Otto Heinrich Warburg descubre la asociación con enzimas de la cadena respiratoria, aunque ya Kingsbury, en 1912 había relacionado estos orgánulos con la respiración celular. En 1934 fueron aisladas por primera vez a partir de homogeneizados de hígado y en 1948 Hogeboon, Schneider y Palade establecen definitivamente la mitocondria como el lugar donde se produce la respiración celular.[9]

La presencia del ADN mitocondrial fue descubierta por Margit M. K. Nass y Sylvan Nass en 1963.[5][10]

Estructura y composiciónEditar

 
Estructura de una mitocondria.

La morfología de la mitocondria es difícil de describir puesto que son estructuras muy plásticas que se deforman, se dividen y fusionan.[11]​ Normalmente se las representa en forma alargada. Su tamaño oscila entre 0,5 y 1 μm de diámetro y hasta 8 μm de longitud.[12]​ Su número depende de las necesidades energéticas de la célula. Al conjunto de las mitocondrias de la célula se le denomina condrioma celular.

Las mitocondrias están rodeadas de dos membranas claramente diferentes en sus funciones y actividades enzimáticas, que separan tres espacios: el citosol (o matriz citoplasmática), el espacio intermembranoso y la matriz mitocondrial.

Membrana externaEditar

Es una bicapa lipídica exterior permeable a iones, metabolitos y muchos polipéptidos. Eso es debido a que contiene proteínas que forman poros, llamadas porinas o VDAC (de canal aniónico dependiente de voltaje), que permiten el paso de grandes moléculas de hasta 5.000 dalton y un diámetro aproximado de 20 Å. La membrana externa realiza relativamente pocas funciones enzimáticas o de transporte. Contiene entre un 60 y un 70 % de proteínas.

Membrana internaEditar

La membrana interna contiene más proteínas (80 %), carece de poros y es altamente selectiva; contiene muchos complejos enzimáticos y sistemas de transporte transmembrana, que están implicados en la translocación de moléculas.

Crestas mitocondrialesEditar

En la mayoría de los eucariontes, las crestas forman tabiques aplanados perpendiculares al eje de la mitocondria, pero en algunos protistas tienen forma tubular o discoidal.

Estudios recientes demostraron que la membrana de las crestas no se forma por invaginación de la membrana interna sino que conforman un sistema membranoso aparte de la membrana interna y la externa. Se conectan a la membrana interna en puntos concretos que facilitarán el transporte de metabolitos entre los distintos compartimentos de la mitocondria. En la membrana de las crestas se llevarán a cabo funciones relacionadas con el metabolismo oxidativo como la cadena respiratoria o la fosforilación oxidativa.

  1. La cadena de transporte de electrones, compuesta por cuatro complejos enzimáticos fijos y dos transportadores de electrones móviles:
    1. Complejo I o NADH deshidrogenasa que contiene flavina mononucleótido (FMN).
    2. Complejo II o succinato deshidrogenasa; ambos ceden electrones al coenzima Q o ubiquinona.
    3. Complejo III o citocromo bc1 que cede electrones al citocromo c.
    4. Complejo IV o citocromo c oxidasa que cede electrones al O2 para producir dos moléculas de agua.
  2. Un complejo enzimático, el canal de H+ ATP sintasa que cataliza la síntesis de ATP (fosforilación oxidativa).
  3. Proteínas transportadoras que permiten el paso de iones y moléculas a su través, como ácidos grasos, ácido pirúvico, ADP, ATP, O2 y agua; pueden destacarse:
    1. Nucleótido de adenina translocasa. Se encarga de transportar a la matriz mitocondrial el ADP citosólico formado durante las reacciones que consumen energía y, paralelamente transloca hacia el citosol el ATP recién sintetizado durante la fosforilación oxidativa.
    2. Fosfato translocasa. Transloca fosfato citosólico junto con un hidrón a la matriz; el fosfato es esencial para fosforilar el ADP durante la fosforilación oxidativa.

Espacio intermembranosoEditar

Entre ambas membranas queda delimitado un espacio intermembranoso que está compuesto de un líquido similar al hialoplasma; tienen una alta concentración de protones como resultado del bombeo de los mismos por los complejos enzimáticos de la cadena respiratoria. En él se localizan diversas enzimas que intervienen en la transferencia del enlace de alta energía del ATP, como la adenilato kinasa o la creatina quinasa. También se localiza la carnitina, una molécula implicada en el transporte de ácidos grasos desde el citosol hasta la matriz mitocondrial, donde serán oxidados (beta-oxidación).

Matriz mitocondrialEditar

La matriz mitocondrial o mitosol contiene menos moléculas que el citosol, aunque contiene iones, metabolitos a oxidar, ADN circular bicatenario muy parecido al de las bacterias, ribosomas tipo 55S (70S en vegetales), llamados mitorribosomas, que realizan la síntesis de algunas proteínas mitocondriales, y contiene ARN mitocondrial; es decir, tienen los orgánulos que tendría una célula procariota de vida libre. En la matriz mitocondrial tienen lugar diversas rutas metabólicas clave para la vida, como el ciclo de Krebs y la beta-oxidación de los ácidos grasos; también se oxidan los aminoácidos y se localizan algunas reacciones de la síntesis de urea y grupos hemo.

FunciónEditar

La principal función de las mitocondrias es la oxidación de metabolitos (ciclo de Krebs, beta-oxidación de ácidos grasos) y la obtención de ATP mediante la fosforilación oxidativa, que es dependiente de la cadena transportadora de electrones; el ATP producido en la mitocondria supone un porcentaje muy alto del ATP sintetizado por la célula. También sirve de almacén de sustancias como iones, agua y algunas partículas como restos de virus y proteínas.

Captación de proteínas en las mitocondriasEditar

Las mitocondrias poseen cuatro compartimentos en los cuales pueden llegar las proteínas:

1. Membrana mitocondrial externa.

2. Membrana mitocondrial interna.

3. Espacio intermembranoso.

4. Matriz.

La mayor parte de las proteínas destinadas a la membrana mitocondrial interna cuenta con secuencias directrices internas que pertenecen como parte de la molécula. Antes de que esta proteína pueda entrar a la mitocondria, se piensa que pasa por diferentes fenómenos. Antes de que esta proteína pueda entrar a la mitocondria, se tiene que encontrar en un estado desplegado o extendido. Las chaperonas como Hsp70 y Hsp90 participan en la preparación de los polipéptidos para su captación en las mitocondrias incluyendo las que se dirigen de manera específica las proteínas mitocondriales a la superficie citosólica de la membrana mitocondrial externa.

La membrana mitocondrial externa contiene un complejo importador de proteínas llamada complejo TOM, este complejo incluye:

1) receptores que reconocen y se unen con proteínas mitocondriales

2) canales recubiertos por proteínas por los cuales pasan los polipéptidos desplegados a través de la membrana externa.

Las proteínas destinadas a la membrana mitocondrial interna o matriz deben pasar por el espacio intermembranoso y acoplarse a un segundo complejo importador de proteínas que se encuentra en la membrana mitocondrial interna, el complejo TIM.

La membrana mitocondrial interna contiene dos complejos TIM mayores: TIM22 y TIM23, la TIM22 se une a proteínas integrales de la membrana mitocondrial interna que contiene una secuencia directriz interna y la inserta en la bicapa lipídica, mientras que la TIM23 se une a proteínas que tienen una presecuencia en el amino terminal, que incluyen todas las proteínas de la matriz, reconoce y traslada a las proteínas a través de la membrana mitocondrial interna y hasta el compartimento acuoso interno. La translocación ocurre en sitios en los que las membranas mitocondriales externa e interna están muy próximas, de manera que la proteína importada puede cruzar ambas membranas al mismo tiempo.

El movimiento hacia la matriz está impulsado por el potencial eléctrico a través de la membrana mitocondrial interna actúa sobre la señal directriz con carga positiva. Cuando entra a la matriz, un polipéptido interactúa con las chaperonas mitocondriales que median la entrada al compartimiento acuoso. También se ha propuesto que las chaperonas actúan como motores generadores de fuerza que usan la energía derivada de la hidrólisis del ATP para “tirar” del polipéptido desplegado a través del poro de translocación, también se propone que ayudan a la difusión del polipéptido a través de la membrana.

OrigenEditar

La científica estadounidense Lynn Margulis, junto con otros científicos, recuperó en torno a 1980 una antigua hipótesis, reformulándola como teoría endosimbiótica. Según esta versión actualizada, hace unos 1.500 millones de años, una célula procariota capaz de obtener energía de los nutrientes orgánicos empleando el oxígeno molecular como oxidante, se fusionó en un momento de la evolución con otra célula procariota o eucariota primitiva al ser fagocitada sin ser inmediatamente digerida, un fenómeno frecuentemente observado. De esta manera se produjo una simbiosis permanente entre ambos tipos de seres: la procariota fagocitada proporcionaba energía, especialmente en forma de ATP y la célula hospedadora ofrecía un medio estable y rico en nutrientes a la otra. Este mutuo beneficio hizo que la célula invasora llegara a formar parte del organismo mayor, acabando por convertirse en parte de ella: la mitocondria. Otro factor que apoya esta teoría es que las bacterias y las mitocondrias tienen mucho en común, tales como el tamaño, la estructura, componentes de su membrana y la forma en que producen energía, etc.

Esta hipótesis tiene entre sus fundamentos la evidencia de que las mitocondrias poseen su propio ADN y están recubiertas por su propia membrana. Otra evidencia que sostiene esta hipótesis es que el código genético del ADN mitocondrial no suele ser el mismo que el código genético del ADN nuclear.[13]​ A lo largo de la historia común la mayor parte de los genes mitocondriales han sido transferidos al núcleo, de tal manera que la mitocondria no es viable fuera de la célula hospedadora y ésta no suele serlo sin mitocondrias.

Enfermedades mitocondrialesEditar

El ADN mitocondrial humano contiene información genética para 13 proteínas mitocondriales y algunos ARN;[12]​ no obstante, la mayoría de las proteínas de las mitocondrias proceden de genes localizados en el ADN del núcleo celular y que son sintetizadas por ribosomas libres del citosol y luego importadas por el organelo. Se han descrito más de 150 enfermedades mitocondriales, como la enfermedad de Luft o la neuropatía óptica hereditaria de Leber. Tanto las mutaciones del ADN mitocondrial, como del ADN nuclear dan lugar a enfermedades genéticas mitocondriales, que originan un mal funcionamiento de procesos que se desarrollan en las mitocondrias, como alteraciones de enzimas, ARN, componentes de la cadena de transporte de electrones y sistemas de transporte de la membrana interna; muchas de ellas afectan al músculo esquelético y al sistema nervioso central.

El ADN mitocondrial puede dañarse con los radicales libres formados en la mitocondria;[14]​ así, enfermedades degenerativas relacionadas con el envejecimiento, como la enfermedad de Parkinson, la enfermedad de Alzheimer y las cardiopatías pueden tener relaciones con lesiones mitocondriales.[12]

Pérdida de mitocondrias por evoluciónEditar

Existen protistas sin mitocondrias que carecen de ellas por una pérdida secundaria[15]​ o una degeneración de las mismas, para adaptarse a un modo de vida parásito, intracelular o anaerobio.

El papel de la mitocondria en la fertilidad femeninaEditar

La fertilidad femenina se ve afectada por el envejecimiento, teniendo el pico de la capacidad de reproducción a los 25 años aproximadamente, el cual, declina con la edad disminuyendo considerablemente a partir de los 37. Numerosos estudios sugieren que una disminución de la calidad del oocyto es el causante de la disminución de la capacidad reproductiva relacionada con la edad, y aunque los mecanismos subyacentes aún se desconocen, algunos científicos hipotetizan con que alteraciones en la mitocondria podrían ser los factores clave que medien la capacidad reproductiva (Benkhalifa et al., 2014; Ramalho-Santos et al., 2009; Schatten et al., 2014).

La mitocondria en el oocyto y el embriónEditar

Como se ha comentado anteriormente, la función principal de las mitocondrias es la obtención de energía vía ATP ya sea por el Ciclo de Krebs o por la vía glucolítica y son fundamentales para el funcionamiento de la células y su deficiencia puede conllevar a la apoptosis de la célula. Los procesos por los que pasa el oocyto antes de la ovulación y fertilización requieren de ATP, así como los primeros pasos del desarrollo embrionario, cuya eficacia ha sido relacionada con la función y actividad mitocondrial (Benkhalifa et al., 2014; Pang et al., 2013). Las mitocondrias de oocytos maduros y embriones pre-implantados, pasan por transformaciones en su estructura y en su distribución citoplasmática. En los oocytos, la mitocondria es ovalada y tiene una matriz celular densa. Una vez pasado el estadio de mórula, estos cambios estructurales resultan en un aumento de la producción de ATP y en su metabolismo oxidativo. Se ha observado que en algunos embriones incapaces de desarrollarse hay mitocondrias que no han sufrido esta modificación morfológica.

Principalmente el oocyto produce su energía vía fosforilación oxidativa casi totalmente ya que la glucólisis se encuentra limitada por una baja expresión de la fosfofructoquinasa. Por el contrario, las células del cumulus oophorus tienen una gran capacidad glucolítica y le aportan al oocyto piruvato por las uniones gap, para así poder producir ATP. La comunicación entre ambos tipos de células es bidireccional, haciendo que alteraciones en la actividad metabólica en el cumulos oophorus pueda modificar la viabilidad de los oocytos. Una prueba de ello fue un estudio de 2014 realizado por Hsu et al. donde demostraban por primera vez que las mujeres con endometriosis, cuando se han usado técnicas de reproducción asistida, se ha observado que tienen una disminución de ATP por las células del cumulus que hace que el número de oocytos maduros y las tasas de implantación se vean alterados. Posiblemente porque se haya dado una disfunción mitocondrial.

Por otro lado, la utilización de hormonas en la estimulación ovárica podría afectar al sistema reproductor femenino, haciendo que aumente el número de células del cumulus en apoptosis, disminuyendo así el piruvato que llega a los oocytos, influyendo por tanto en su calidad (Dell’Aquila et al., 2009; Eichenlaub-Ritter et al., 2011).

Efectos del estrés oxidativoEditar

El estrés oxidativo se produce por una inestabilidad entre la producción de especies reactivas de oxígeno (ROS) y las moléculas antioxidantes que lo neutralizan. Una mayor producción de ROS puede provocar un aumento del daño de las enzimas mitocondriales. Los niveles de producción de ROS se pueden ver alterados por factores intrínsecos al individuo como puede ser el estilo de vida - que hace que se acumule con los años -, obesidad, resistencia a insulina, endometriosis, síndrome de ovario poliquístico, etc. También, hay factores externos en las terapias de reproducción asistida, como pueden ser la exposición a la luz visible, un pH no ideal y la temperatura, los que pueden aumentar los niveles de producción de ROS. Es por todo ello que hay un aumento del estrés oxidativo que conlleva a una menor probabilidad de concepción en estas terapias. Aunque hay células dentro del tejido ovárico que podrían tener efecto antioxidante, no es suficiente para combatirlo. Además, la capacidad antioxidante se va perdiendo con los años, por lo que una mujer de 38 años tendrá un aumento de estrés oxidativo comparado con una mujer de 32.

Cómo afecta el estrés oxidativo a la concepción y al desarrollo del embrión se cree que es porque afecta al ADN mitocondrial, que puede conllevar a una pérdida crítica de función y, por lo tanto, en una disminución de ATP. Hay estudios que también relacionan a los niveles de calcio con fallos en la función mitocondrial.

Terapias mitocondriales en la reproducción asistidaEditar

El trasplante autólogo de mitocondrias se ha considerado como una opción terapéutica para aquellas mujeres que han tenido varios intentos fallidos de fertilización in vitro. AUGMENT (por sus siglas en inglés, germline mitochondrial energy transfer, Sinclair, 2013.) consiste en la obtención de precursores de células ováricas de la corteza ovárica mediante laparoscopia. Posteriormente se aislarían sus mitocondrias, las cuales están en condiciones óptimas, y se transferirían en el oocyto junto con el esperma mediante inyección intracitoplasmática. Esta técnica no ha sido aprobada por la Administración del Medicamento de Estados Unidos, y no es clara su eficacia. Sin embargo, esta técnica ha funcionado en numerosas mujeres y ha permitido que pudieran concebir.

Véase tambiénEditar

ReferenciasEditar

  1. Faller, Adolf; Schünke, Michael (20 de julio de 2006). ESTRUCTURA Y FUNCIÓN DEL CUERPO HUMANO (Color). Editorial Paidotribo. ISBN 9788480198677. Consultado el 19 de febrero de 2018. 
  2. Berg, Jeremy Mark; Stryer, Lubert; Tymoczko, John L. (2007). Bioquímica. Reverte. ISBN 9788429176001. Consultado el 19 de febrero de 2018. 
  3. Koolman, Jan; Röhm, Klaus-Heinrich (2005). Bioquímica: texto y atlas. Ed. Médica Panamericana. ISBN 9788479037246. Consultado el 21 de marzo de 2018. 
  4. Immo Scheffler (2007). Mitochondria (Google books) (en inglés) (2ª ilustrada edición). Willey-Liss. p. 1. ISBN 9780470040737. 
  5. a b c Dr. Sastry, Dr. Singh & Dr. Tomar. «Cell & Developmental Biology». Rastogi Publications. ISBN 9788171336784. 
  6. Flemming, Whalter (1882). «Zellsubstanz, Kern und Zelltheilung». Vogel-Verlag KG (Leipzig). 
  7. a b William F. Martin, Miklós Müller (2007). «Origin of mitochondria and hydrogenosomes». Springer. ISBN 9783540385011. 
  8. Lester W. Sharp (2007). «An Introduction to Citology». READ books. ISBN 9781406717730. 
  9. P.K. Gupta. «Genetics: Classical to Modern». Rastogi. ISBN 9788171338962. 
  10. Nass, M.M. & Nass, S. (1963 en el Instituto Wenner-Gren de Biología Experimental, Universidad de Estocolmo): Intramitochondrial Fibers with DNA characteristics (PDF). En: J. Cell. Biol. Bd. 19, S. 593–629. PMID 14086138
  11. Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2007). Fundamentos De Bioquimica/ Fundamental of Biochemistry. Ed. Médica Panamericana. ISBN 9789500623148. Consultado el 21 de marzo de 2018. 
  12. a b c Devlin, T. M. 2004. Bioquímica, 4ª edición. Reverté, Barcelona. ISBN 84-291-7208-4
  13. «Genetic Code of mitochondria - Mitogenome.com». Archivado desde el original el 25 de junio de 2008. Consultado el 3 de septiembre de 2007. 
  14. Bejarano I, Espino J, González-Flores D, Casado JG, Redondo PC, Rosado JA, Barriga C, Pariente JA, Rodríguez AB (2009). "Role of Calcium Signals on Hydrogen Peroxide-Induced Apoptosis in Human Myeloid HL-60 Cells". International Journal of Biomedical science 5(3): 246-256.
  15. Cavalier-Smith, T. 1993. Kingdom protozoa and its 18 phyla. (enlace roto disponible en Internet Archive; véase el historial y la última versión). Microbiol. Mol. Biol. Rev. December 1993 vol. 57 no. 4 953-994

Enlaces externosEditar