Segundo axioma de numerabilidad

Se dice que un espacio topológico verifica el segundo axioma de numerabilidad (o que es segundo numerable, o segundo contable) si su topología tiene una base numerable. En forma abreviada, suele decirse también que el espacio es IIAN o ANII.

PropiedadesEditar

  • El ser ANII es una propiedad global que limita el número de abiertos de la topología. De hecho, se demuestra que si (X,T) es ANII, entonces el cardinal de T es menor o igual que el cardinal del continuo.
  • Ser ANII es una propiedad hereditaria: todo subespacio de un espacio ANII también lo es.[1]
  • El producto numerable de espacios ANII es a su vez ANII.
  • Todo espacio ANII es un espacio ANI.[2]
  • Todo espacio ANII es un espacio de Lindelöf.[2]

EjemplosEditar

  • El espacio euclídeo   con su topología usual es ANII. Aunque la base formada por las bolas abiertas no es numerable, podemos encontrar una base que sí lo es: la formada por las bolas de radio racional y cuyo centro tenga coordenadas racionales.
  • La táctica anterior puede repetirse en un espacio métrico separable ( i.e. que contenga un subconjunto denso numerable A). Como base basta escoger de nuevo las bolas de radio racional centradas en A.
  • El espacio topológico trivial es ANII puesto que la única base de abiertos contiene un único elemento.[2]
  • El espacio topológico discreto,  , es ANII si y sólo si   es numerable.[2]
  • El espacio de Sorgenfrey no es ANII, aunque sí es ANI.[3]
  • La recta cofinita,  , no es ANII puesto que no es ANI. [3]

Véase tambiénEditar

ReferenciasEditar

  1. Llopis, José L. «Propiedades topológicas hereditarias». Matesfacil. ISSN 2659-8442. Consultado el 10 de octubre de 2019. 
  2. a b c d Llopis, José L. «Axiomas de numerabilidad». Matesfacil. ISSN 2659-8442. Consultado el 2 de septiembre de 2019. 
  3. a b Macho Stadler, Marta. «Topología general (primera parte)». Universidad del País Vasco. Consultado el 2 de septiembre de 2019.