Abrir menú principal

Congelación

(Redirigido desde «Congelación (alimentos)»)

La congelación es una transición de fase en la que un líquido se convierte en un sólido cuando su temperatura desciende por debajo de su punto de congelación. En contraste, la solidificación es un proceso similar en el que un líquido se convierte en un sólido, no al disminuir su temperatura, sino al aumentar la presión a la que se encuentra sometido. A pesar de esta distinción técnica, los dos procesos son muy similares y los dos los términos se usan indistintamente.

Para la mayoría de las sustancias, los puntos de fusión y congelación son la misma temperatura; sin embargo, ciertas sustancias poseen diferentes temperaturas de transición sólido-líquido. Por ejemplo, el agar muestra una histéresis en su punto de fusión y punto de congelación. Se derrite a 85 °C (185 °F) y se solidifica de 32 °C a 40 °C (89.6 °F a 104 °F).[1]

Índice

CristalizaciónEditar

La mayoría de los líquidos se congelan por cristalización, formando un sólido cristalino a partir del líquido uniforme. Esta es una transición de fase termodinámica de primer orden, lo que significa que, mientras coexistan el sólido y el líquido, la temperatura de todo el sistema permanece casi igual al punto de fusión debido a la eliminación lenta del calor cuando entra en contacto con el aire, que es un mal conductor del calor. Debido al calor latente de fusión, la congelación se ralentiza en gran medida y la temperatura ya no bajará una vez que comience la congelación, pero continuará disminuyendo una vez que finalice. La cristalización consiste en dos eventos principales, la nucleación y el crecimiento de cristales. La nucleación es el paso en el que las moléculas comienzan a reunirse en grupos, a escala nanométrica, organizándose de una manera definida y periódica que define la estructura cristalina. El crecimiento del cristal es el crecimiento subsiguiente de los núcleos que logran alcanzar el tamaño crítico del grupo.

SuperenfriamientoEditar

Formación rápida de cristales de hielo en agua superenfriada

A pesar de la segunda ley de la termodinámica, la cristalización de líquidos puros generalmente comienza a una temperatura más baja que el punto de fusión, debido a la alta energía de activación de la nucleación homogénea. La creación de un núcleo implica la formación de una interfaz en los límites de la nueva fase. Se gasta algo de energía para formar esta interfaz, en función de la energía de la superficie de cada fase. Si un núcleo hipotético es demasiado pequeño, la energía que se liberaría al formar su volumen no es suficiente para crear su superficie, y la nucleación no se produce. La congelación no comienza hasta que la temperatura es lo suficientemente baja como para proporcionar suficiente energía para formar núcleos estables. En presencia de irregularidades en la superficie del recipiente que contiene, impurezas sólidas o gaseosas, cristales sólidos preformados u otros nucleadores, puede producirse una nucleación heterogénea, donde se libera una parte de la energía por la destrucción parcial de la interfaz anterior, elevando el punto de sobreenfriamiento a estar cerca o igual al punto de fusión. El punto de fusión del agua a 1 atmósfera de presión está muy cerca de 0 °C (32 °F, 273.15 K), y en presencia de sustancias nucleantes, el punto de congelación del agua está cerca del punto de fusión, pero en ausencia de los nucleadores de agua pueden enfriarse hasta -40 °C (−40 ° F, 233 K) antes de la congelación.[2][3]​ Bajo presión alta (2,000 atmósferas), el agua se enfriará hasta −70 °C (−94 ° F, 203 K) antes de la congelación.[4]

ExotermicidadEditar

La congelación es casi siempre un proceso exotérmico, lo que significa que a medida que el líquido cambia a sólido, se libera calor y presión. Esto se ve a menudo como contraintuitivo,[5]​ ya que la temperatura del material no se eleva durante la congelación, excepto si el líquido se enfrió en exceso. Pero esto se puede entender, ya que el calor debe eliminarse continuamente del líquido de congelación o el proceso de congelación se detendrá. La energía liberada al congelarse es un calor latente, y se conoce como entalpía de fusión y es exactamente la misma que la energía requerida para fundir la misma cantidad de sólido.

El helio a baja temperatura es la única excepción conocida a la regla general.[6]​ El helio-3 tiene una entalpía negativa de fusión a temperaturas por debajo de 0.3 K. El helio-4 también tiene una entalpía de fusión muy ligeramente negativa por debajo de 0.8 K. Esto significa que, a presiones constantes apropiadas, se debe agregar calor a estas sustancias para congelarlos.[7]

VitrificaciónEditar

Ciertos materiales, como el vidrio y el glicerol, pueden endurecerse sin cristalizar; estos se llaman sólidos amorfos. Los materiales amorfos y algunos polímeros no tienen un punto de congelación, ya que no hay un cambio brusco de fase a ninguna temperatura específica. En cambio, hay un cambio gradual en sus propiedades viscoelásticas en un rango de temperaturas. Dichos materiales se caracterizan por una transición vítrea que se produce a una temperatura de transición vítrea, que puede definirse aproximadamente como el punto de "pivote" de la densidad del material frente al gráfico de temperatura. Debido a que la vitrificación es un proceso de no equilibrio, no se califica como congelación, lo que requiere un equilibrio entre el estado cristalino y el líquido.

ExpansiónEditar

Algunas sustancias, como el agua y el bismuto, se expanden cuando se congelan. El paso de agua a hielo comporta un aumento de volumen cercano al 9 %. Debido a este fenómeno los alimentos más ricos en agua se expanden más que aquellos cuyo contenido es menor. Esto puede dar lugar a fracturas o agrietamientos. Es importante tenerlo en cuenta a la hora de fabricar el envase si este puede ir muy ajustado.

Congelación de organismos vivos.Editar

 
Helado de chocolate.

Muchos organismos vivos pueden tolerar períodos prolongados de tiempo a temperaturas por debajo del punto de congelación del agua. La mayoría de los organismos vivos acumulan crioprotectores como las proteínas antinucleantes, los polioles y la glucosa para protegerse contra el daño del congelamiento por los cristales de hielo afilados. La mayoría de las plantas, en particular, pueden alcanzar con seguridad temperaturas de −4 °C a −12 °C. Ciertas bacterias, especialmente Pseudomonas syringae, producen proteínas especializadas que sirven como potentes nucleadores de hielo, que utilizan para forzar la formación de hielo en la superficie de varias frutas y plantas a aproximadamente -2 °C.[8]​ La congelación causa lesiones en los epitelios y hace que los nutrientes de los tejidos vegetales subyacentes estén disponibles para las bacterias.[9]

BacteriasEditar

Según los informes, tres especies de bacterias, Carnobacterium pleistocenium, así como Chryseobacterium greenlandensis y Herminiimonas glaciei, han revivido después de sobrevivir por miles de años congeladas en el hielo.

PlantasEditar

Muchas plantas se someten a un proceso llamado endurecimiento en frío, que les permite sobrevivir a temperaturas por debajo de 0 ° C durante semanas o meses.

AnimalesEditar

El nematodo Haemonchus contortus puede sobrevivir a 44 semanas congelado a temperaturas de nitrógeno líquido. Otros nematodos que sobreviven a temperaturas por debajo de 0 °C incluyen Trichostrongylus colubriformis y Panagrolaimus davidi. Muchas especies de reptiles y anfibios sobreviven a la congelación. Ver criobiología para una discusión completa.

Los gametos humanos y los embriones de 2, 4 y 8 células pueden sobrevivir a la congelación y son viables hasta por 10 años, un proceso conocido como crioconservación.

Los intentos experimentales de congelar a los seres humanos para su posterior avivamiento son conocidos como criónicos.

Preservación alimentariaEditar

La congelación es un método común de conservación de alimentos que retarda la descomposición de los alimentos y el crecimiento de microorganismos. Además del efecto de temperaturas más bajas en las velocidades de reacción, la congelación hace que el agua esté menos disponible para el crecimiento bacteriano.

 
Pizza congelada.
  • Por aire: una corriente de aire frío extrae el calor del producto hasta que se consigue la temperatura final
  • Por contacto: una superficie fría en contacto con el producto que extrae el calor
  • Criogénico: se utilizan fluidos criogénicos, nitrógeno o dióxido de carbono, que sustituyen al aire frío para conseguir el efecto congelador.

Aproximadamente el 80 % del peso total de un animal e incluso más de una planta corresponde al agua. El agua es el componente mayoritario de los alimentos que derivan de animales y plantas.

Al congelar un alimento, el agua se transforma en hielo y se produce un efecto de desecación.

Velocidad de congelaciónEditar

La calidad de un producto congelado depende de la velocidad a la que éste es congelado. Dicha velocidad se define como la distancia mínima entre la superficie y el punto crítico partida por el tiempo en el que el punto crítico ha pasado desde 0 °C a -15 °C.

  • Lenta: < 1 cm/h, por ejemplo un congelador doméstico con el aire inmóvil a -18 °C
  • Media: 1-5 cm/h, en un túnel de aire frío a 20 km/h y -40 °C
  • Rápida: > 5 cm/h, en la inmersión en nitrógeno líquido

Tiempo de congelaciónEditar

El tiempo de congelación de un producto depende de su naturaleza y del procedimiento empleado. El cálculo del tiempo empleado en congelar un producto es muy complejo.

Gracias a la fórmula del tiempo de congelación de Plank, se puede determinar éste tiempo, excepto guisantes y las coliflores.

 

donde:

  •  : reducción de entalpía que sufrirá el producto. (kJ/kg)
  •  : masa volumétrica del producto congelado (kg/m³)
  •  : coeficiente de conductividad térmica en congelación (W/m °C)
  • D: espesor, medido en paralelo al flujo de calor. (m)
  • N: coeficiente que caracteriza la forma, siendo N=2 para una placa, N=4 para un cilindro y N=6 para una esfera.
  •  : incremento de temperatura entre el medio refrigerador y la temperatura de congelación. (°C).
  •  : coeficiente superficial de transmisión térmica entre el medio refrigerante y el producto, teniendo en cuenta el embalaje. (W/m°C).

De esta fórmula teórica se pueden extraer las siguientes conclusiones:

  • Para un producto determinado, de forma y tamaño determinados, el tiempo de congelación depende solamente de las características del proceso.
  • Para un mismo proceso, el tiempo de congelación depende del espesor, forma y volumen del producto y de su diferencia de entalpía.

Efecto del almacenamientoEditar

Se ha demostrado que la temperatura de -18 °C es un nivel adecuado y seguro para conservar los alimentos congelados. Los microorganismos no pueden crecer a esta temperatura y la acción de los enzimas es muy lenta, pero el propio almacenamiento produce alteraciones en el alimento.

RecristalizaciónEditar

Durante el almacenamiento hay una tendencia de los pequeños cristales a unirse entre ellos formando otros de mayor tamaño. Esto se debe a que los pequeños cristales resultan más inestables que los grandes al poseer más energía en la superficie por unidad de masa.

Este fenómeno es más acentuado si se almacena el producto a temperaturas cercanas a 0 °C. Cuanto más baja es la temperatura, menores son los efectos, considerándose casi despreciables por debajo de -60 °C.

Quemadura por fríoEditar

Cualquier entrada de aire caliente al interior de la cámara de congelación da lugar a un gradiente de temperatura entre el aire frío interno y el caliente que penetra. Cuando el aire se calienta aumenta su capacidad de absorción de humedad.

En una cámara de congelación, la única fuente de humedad disponible es el hielo contenido en los alimentos congelados. El aire caliente toma la humedad de los alimentos protegidos deficientemente, desecándolos. Luego, esta humedad es depositada al enfriarse el aire en las superficies frías del congelador. A la formación de hielo a partir de la humedad del aire, sin pasar por el estado líquido, se llama sublimación.

La quemadura por frío es una gran desecación superficial en un alimento congelado, producido por la deshidratación anterior.

Aparece en la superficie del tejido como manchas de color oscuro al ir concentrándose y oxidándose los pigmentos de las capas más superficiales. También aparecen zonas blanco-grisáceas debidas a los huecos dejados por el hielo después de su sublimación.

Si el fenómeno se mantiene durante suficiente tiempo, las capas superficiales se van esponjando y empiezan a deshidratarse las inferiores.

Si la quemadura es pequeña, el fenómeno es reversible por exposición a la humedad y rehidratación. Esto se comprueba sometiendo a cocción una zona ligeramente quemada. Si la quemadura ha sido por el contrario más profunda, se han producido oxidaciones, cambios químicos que ya no son reversibles.

Es importante, pues, la utilización de un embalaje adecuado; ya que es capaz de reducir entre 4 y 20 veces esta pérdida de agua.

La quemadura por frío causa una merma importante en el producto y una pérdida de valor del mismo porque se disminuye su calidad organoléptica.

Bolsas de hieloEditar

Cuando en un alimento que tiene bolsas de aire, huecos o el envase está deficientemente lleno y hay además un gradiente de temperatura en él, el alimento desprende humedad, se produce la sublimación en el interior de dichos huecos o en la pared interior del envase, formando una capa de escarcha y cristales de hielo denominados bolsa de hielo.

Modificaciones en los espacios líquidos residualesEditar

Una de las consecuencias de la congelación es la deshidratación y el aumento de la concentración de solutos en los espacios líquidos de los alimentos.

Cuando se trata de solutos capaces de reaccionar entre sí, la velocidad de reacción aumenta durante la congelación a partir de -5 °C y hasta unos 15 °C, por debajo de este punto la velocidad de reacción disminuye. Las reacciones que se ven más afectadas por éste fenómeno son las químicas, como la oxidación, hidrólisis, más que las enzimáticas.

Consecuencias de este aumento de concentración y velocidad de reacción son:

Todos estos efectos son menores cuanto más rápidamente se produce la congelación y cuanto menor es la temperatura de almacenamiento.

Desnaturalización proteicaEditar

Cuando el producto se ha congelado lentamente o cuando ha habido fluctuaciones de temperatura durante el almacenamiento, los cristales de hielo que se forman crecen extrayendo agua ligada a las proteínas, de tal forma que estas se desorganizan siendo luego incapaces de recuperar dicha agua durante la descongelación, de manera que esta agua al perderse arrastra los nutrientes hidrosolubles. Este proceso cambia la textura del alimento, produciendo un endurecimiento e incluso disminuyendo su solubilidad y valor nutritivo.

Retracción del almidónEditar

El almidón está formado por cadenas lineales de glucosa, llamadas amilosa, y por estructuras ramificadas complejas llamadas amilopectina.

Los gránulos de almidón en un suspensión fría tienden a hincharse, reteniendo agua, y a una cierta temperatura gelatinizan espesando el líquido.

Cuando este gel se deja reposar, las cadenas lineales de amilosa se agregan como si cristalizaran y liberan parte del agua previamente retenida en su estructura, en un proceso llamado sinéresis.

Por ello conviene seleccionar en los alimentos congelados almidones con muy baja proporción de amilosa. Por ejemplo el arroz tiene una proporción de amilosa del 16 %, el maíz del 24 % y el sorgo y la tapioca no contienen amilosa.

Contracción de los lípidosEditar

Un lípido en estado sólido se denomina grasa, mientras que si está líquido se llama aceite. El cambio de estado de sólido a líquido depende de la temperatura de fusión del lípido. Al congelar un alimento los aceites se solidifican y pueden llegar a contraerse.

Todos estos procesos descritos anteriormente dan lugar a tensiones internas que pueden llegar a producir agrietamientos o fracturas del alimento congelado.

Véase tambiénEditar

ReferenciasEditar

  1. «All About Agar». Sciencebuddies.org. Archivado desde el original el 3 June 2011. Consultado el 27 de abril de 2011. 
  2. Lundheim R. (2002). «Physiological and ecological significance of biological ice nucleators». Philosophical Transactions of the Royal Society B 357 (1423): 937-943. PMC 1693005. PMID 12171657. doi:10.1098/rstb.2002.1082. 
  3. Franks F. (2003). «Nucleation of ice and its management in ecosystems» (PDF). Philosophical Transactions of the Royal Society A 361 (1804): 557-574. Bibcode:2003RSPTA.361..557F. PMID 12662454. doi:10.1098/rsta.2002.1141. 
  4. Jeffery, CA; Austin, PH (November 1997). «Homogeneous nucleation of supercooled water: Results from a new equation of state». Journal of Geophysical Research 102 (D21): 25269-25280. Bibcode:1997JGR...10225269J. doi:10.1029/97JD02243. 
  5. Qué es una reacción exotérmica? Americano científico, 1999
  6. Atkins, Peter; Jones, Loretta (2008), Chemical Principles: The Quest for Insight (4th edición), W. H. Freeman and Company, p. 236, ISBN 0-7167-7355-4 
  7. Ott, J. Bevan; Boerio-Goates, Juliana (2000), Chemical Thermodynamics: Advanced Applications, Academic Press, pp. 92-93, ISBN 0-12-530985-6 
  8. Maki LR, Galyan EL, Chang-Chien MM, Caldwell DR; Galyan; Chang-Chien; Caldwell (1974). «Ice nucleation induced by Pseudomonas syringae». Applied Microbiology 28 (3): 456-459. PMC 186742. PMID 4371331. 
  9. Zachariassen KE, Kristiansen E; Kristiansen (2000). «Ice nucleation and antinucleation in nature». Cryobiology 41 (4): 257-279. PMID 11222024. doi:10.1006/cryo.2000.2289. 

Enlaces externosEditar