Abrir menú principal

Definición formalEditar

Un monoide   es una estructura algebraica en la que   es un conjunto y   es una operación binaria interna en  :

 

Que cumple las siguientes tres propiedades (la primera es redundante con la definición):[1]

  1. Operación interna: para cualesquiera dos elementos del conjunto A operados bajo  , el resultado siempre pertenece al mismo conjunto A. Es decir:
     
  2. Asociatividad: para cualesquiera elementos del conjunto A no importa el orden en que se operen las parejas de elementos, mientras no se cambie el orden de los elementos (ver grupo abeliano), siempre dará el mismo resultado. Es decir:
     
  3. Elemento neutro: existe un (único) elemento, e, en A que es neutro de la operación  , es decir:
     

Es fácil demostrar que el elemento neutro es necesariamente único por lo que es redundante exigir su unicidad en este axioma o propiedad. En esencia, un monoide es un semigrupo con elemento neutro.

ConmutatividadEditar

Si además se cumple la propiedad conmutativa:

Conmutatividad: un conjunto A tiene la propiedad conmutativa respecto a la operación interna   si:

 

Se dice que es un monoide conmutativo o abeliano.

EjemplosEditar

Concatenación de cadenas alfanuméricasEditar

Dado un conjunto A de caracteres alfanuméricos, que llamaremos alfabeto, una cadena alfanumerica del alfabeto A es una secuencia de elementos de A en cualquier orden y de cualquier longitud, si tomas el conjunto como:

 

Cadenas del alfabeto[2]A, que representamos C(A) pueden ser:

 
 
 
 

La cadena vacía, la que no tiene ningún carácter, sería:

 

Definimos la operación   de concatenación de cadenas del alfabeto A como:

 

que podemos representar, de las siguientes formas:

  •  
  •  

podemos ver que   tiene estructura algebraica de monoide:

1.- Es una operación interna: para cualquiera dos cadenas del alfabeto A su concatenación es una cadena de A:

 .

2.- Es asociativa:

 

3.- Tiene elemento neutro: para todo elemento a cadena de caracteres de A, existe la cadena vacía   de A, de modo que:

 

La concatenación de cadenas de caracteres no es conmutativa:

 

Siendo a, b de C(A) la concatenación de a con b no es igual a la concatenación de b con a.

Luego la concatenación de cadenas alfanuméricas es un monoide no conmutativo.

Multiplicación de números naturalesEditar

Partiendo del conjunto de los números naturales:

 

y la operación multiplicación, podemos ver que:   es un monoide

1.- Es una operación interna: para cualquiera dos números naturales su multiplicación es un número natural:

 .

2.- Es asociativa:

 

3.- Tiene elemento neutro: el 1 en N, es neutro para todos los números naturales ya que cumple:

 

4.- La multiplicación de números naturales es conmutativa:

 

El conjunto de los números naturales, bajo la operación multiplicación:  , tiene estructura algebraica de monoide conmutativo o abeliano.

En la teoría de categoríasEditar

Una categoría monoidal[cita requerida], es una categoría con una operación binaria que convierte a la categoría en un monoide. Dos ejemplos:

  1. La categoría de conjuntos con la unión disjunta de conjuntos y el conjunto vacío como elemento neutro.
  2. La categoría   de los espacios vectoriales sobre un campo   junto con el producto tensorial de espacios vectoriales y a   como el elemento neutro.

Véase tambiénEditar

ReferenciasEditar

  1. Álgebra (1971) Lang, Serge, versión española de Milagros Ancoche ISBN 84-03-20216-4; pg.3
  2. Hernández Rodríguez, Leonardo Alonso; Jaramillo Valbuena, Sonia; Cardona Torres, Sergio Augusto (2010). «2.1.2». Practique la teoría de autómatas y lenguajes formales. Ediciones Elizcom. p. 8. ISBN 978-958-44-7913-6. 

BibliografíaEditar

  1. Gutiérrez Gómez, Andrés; García Castro, Fernando. Álgebra lineal (2 edición). Ediciones Pirámide, S.A. ISBN 978-84-368-0174-3. 

Enlaces externosEditar