Teorema de Stokes

El teorema de Stokes, también llamado teorema de Kelvin-Stokes, es un teorema en cálculo vectorial en . Dado un campo vectorial, el teorema relaciona la integral del rotacional de un campo vectorial sobre una superficie, con la integral de línea del campo vectorial sobre la frontera de la superficie.

El teorema de Stokes es un caso especial del teorema de Stokes generalizado.

TeoremaEditar

Sea   una superficie suave orientada en   con frontera  . Si un campo vectorial   está definido y tiene derivadas parciales continuas en una región abierta que contiene a   entonces

 

de manera más explícita, la igualdad anterior dice que

 

AplicacionesEditar

Ecuaciones de MaxwellEditar

En electromagnetismo, el teorema de Stokes justifica la equivalencia entre la forma diferencial de la ecuación de Maxwell-Faraday y la ecuación de Maxwell-Ampère y la forma integral de estas ecuaciones.

Para la ley de Faraday, el teorema de Stokes se aplica al campo eléctrico  

 

Para la ley de Ampère, el teorema de Stokes se aplica al campo magnético  

 

Véase tambiénEditar

NotasEditar

Enlaces externosEditar