Teorema de Stokes

teorema matemático

El teorema de Stokes, también llamado teorema de Kelvin-Stokes, es un teorema en cálculo vectorial en . Dado un campo vectorial, el teorema relaciona la integral del rotacional de un campo vectorial sobre una superficie, con la integral de línea del campo vectorial sobre la frontera de la superficie.

El teorema de Stokes es ubicuo en áreas de la ciencia como la Física, especialmente en Electromagnetismo. Aquí, el flujo del rotacional del campo inducción magnética (B) se puede sustituir por la integral de camino de dicho campo, derivando así la ley de Ampère

El teorema de Stokes es un caso especial del teorema de Stokes generalizado.

Teorema

editar

Sea   una superficie suave orientada en   con frontera  . Si un campo vectorial   está definido y tiene derivadas parciales continuas en una región abierta que contiene a   entonces

 

de manera más explícita, la igualdad anterior dice que

 

Aplicaciones

editar

Ecuaciones de Maxwell

editar

En electromagnetismo, el teorema de Stokes justifica la equivalencia entre la forma diferencial de la ecuación de Maxwell-Faraday y la ecuación de Maxwell-Ampère y la forma integral de estas ecuaciones.

Para la ley de Faraday, el teorema de Stokes se aplica al campo eléctrico  

 

Para la ley de Ampère, el teorema de Stokes se aplica al campo magnético  

 

Véase también

editar

Enlaces externos

editar