Abrir menú principal

Entorno (matemática)

matemática
(Redirigido desde «Vecindad (topología)»)
Un conjunto en el plano es un entorno de un punto si un pequeño disco alrededor de está contenido en .
Un rectángulo no es un entorno de ninguna de sus esquinas.

Un entorno (o vecindad)[1]​ es uno de los conceptos básicos de la topología. Además, este concepto se utiliza en muchas otras áreas de las matemáticas como el análisis y la teoría de la probabilidad. Intuitivamente hablando, un entorno de un punto es un conjunto que contiene al punto y a un conjunto de los puntos más próximos a él. El aspecto geográfico de vecindad en un lugar se refleja en este concepto matemático.

El concepto de entorno está estrechamente relacionado con los conceptos de conjunto abierto y punto interior.

DefiniciónEditar

Si (X,Τ) es un espacio topológico y p es un punto perteneciente a X, un entorno de p es un conjunto V en el que está contenido un conjunto abierto U que tiene como elemento al punto p,

 

Nótese que el entorno V no tiene por qué ser un conjunto abierto. Si V es abierto se denomina entorno abierto. Algunos autores especifican que los entornos deben ser abiertos, por lo que es importante prestar cuidado a las diferentes definiciones.

El conjunto de todos los entornos de un punto se denomina sistema completo de entornos del punto.

Si S es un subconjunto de X, un entorno de S es un conjunto V, que contiene un conjunto abierto U que contiene a S. Se deduce que un conjunto V es un entorno de S si y solo si es un entorno de todos los puntos de S.

Clases de entornoEditar

  • Entorno reducido: un entorno   de un punto   es un entorno reducido si el propio punto   no pertenece al mismo. Es decir, está compuesto solamente por los puntos cercanos a  . Nótese que, a pesar de su nombre, un entorno reducido no es un entorno propiamente dicho ya que no contiene a  .
  • Entornos abiertos: un entorno   de un punto   es entorno abierto de   si   es un conjunto abierto (es decir,  ).
  • Entornos cerrados: un entorno   de un punto   es entorno cerrado de   si   es un conjunto cerrado.
  • Entorno compacto: un entorno   de un punto   es entorno compacto de   si   es un conjunto compacto.
  • Entorno conexo: un entorno   de un punto   es entorno conexo de   si   es un conjunto conexo
  • Entorno conexo por caminos: un entorno   de un punto   es entorno conexo por caminos de   si   es un conjunto conexo por caminos.
  • Entorno simplemente conexo: un entorno   de un punto   es entorno simplemente conexo de   si   es un conjunto simplemente conexo.
  • Entorno convexo: un entorno   de un punto   en un espacio vectorial topológico   es entorno convexo de   si   es un conjunto convexo.

En espacios métricosEditar

 
Un conjunto   en el plano y un entorno uniforme   de  .

En un espacio métrico M = (X,d), un conjunto V es un entorno de un punto p si existe una bola abierta con centro p y radio r,

 

que es contenida en V.

V es llamado entorno uniforme de un conjunto S si existe un número positivo r tal que para todos los elementos p de S,

 

estén contenidos en V.

Para r>0 el r-entorno   de un conjunto S es el conjunto de todos los puntos en X que distan menos de r desde S (o equivalentemente,   es la unión de todas las bolas abiertas de radio r que tienen centro en un punto de S).

Se deduce entonces que un r-entorno es un entorno uniforme, y que un conjunto es un entorno uniforme si y solo si contiene un r-entorno para algún valor de r.

EjemploEditar

 
Entorno de centro a y radio ε.

Dado el conjunto de números reales   con la distancia euclideana y un subconjunto V definido como:

 

entonces V es un entorno del conjunto   de números naturales, pero no es un entorno uniforme de este conjunto.

Topología de entornosEditar

La definición superior es útil si la noción de conjunto abierto está previamente definida. Existe una forma alternativa de definir una topología, primeramente definiendo su base de entornos, y entonces los conjuntos abiertos como aquellos conjuntos que contienen un entorno para cada uno de sus puntos.

Una base de entornos en X es la asignación de un filtro N(x) (en el conjunto X) para cada x en X tal que:

  1. el punto x es un elemento de cada U en N(x).
  2. cada U en N(x) contiene algún V en N(x) tal que para cada y en V, U esté en N(y).

Entorno uniformeEditar

En un espacio uniforme S:=(X, δ) V es denominado entorno uniforme de P si P no es cercano a X \ V, tal que allí no exista un espacio uniforme que contenga a P y X \ V.

Entorno reducidoEditar

Un entorno reducido de un punto p es un entorno de p, menos {p}. Por ejemplo, el intervalo (−1, 1) = {y : −1 < y < 1} es un entorno de p = 0 en la recta real, entonces el conjunto (−1, 0) ∪ (0, 1) = (−1, 1) − {0} es un entorno reducido de 0.

PropiedadesEditar

Sea (X, T) un espacio topológico, Vc(x) familia de vecindades del punto x.

  1. El punto x está en V para cada V elemento de Vc(x). Un punto está en cualquiera de sus vecindades.
  2. Si las vecindades V y U están en Vc(x), entonces la intersección de V y U está en la familia Vc(x).
  3. Si U está en Vc(x) entonces existe una vecindad V de Vc(x), tal que U está en Vc(y) para cada y miembro de V.
  4. Si U está en Vc(x) y U es subconjunto de V, entonces V está en Vc(x).Un hiperconjunto de una vecindad también es vecindad.

Véase tambiénEditar

ReferenciasEditar

  1. Clara Neira. Notas de Topología

BibliografíaEditar

  • Kelley, John L. (1975). General topology. New York: Springer-Verlag. ISBN 0387901256. 
  • Bredon, Glen E. (1993). Topology and geometry. New York: Springer-Verlag. ISBN 0387979263. 
  • Kaplansky, Irving (2001). Set Theory and Metric Spaces. American Mathematical Society. ISBN 0821826948.