Orden total acotado

En matemáticas, un conjunto presenta un orden total acotado respecto a una relación binaria cuando tiene un orden total y está acotado superior e inferiormente.[1][2]

Relación homogéneaRelación reflexivaRelación no reflexivaConjunto preordenadoRelación de dependenciaConjunto parcialmente ordenadoRelación de equivalenciaOrden totalAcotadoOrden total acotado

Definición

editar

Dado un conjunto A y una relación binaria   definida entre los elementos de A, que expresaremos   y la relación se representa:

 

Se dice que se ha definido un orden total acotado en el conjunto A, si la relación   cumple las propiedades:

Relación reflexiva
 
Relación antisimétrica
 
Relación transitiva
 
Relación total
 
y Acotado
 

Dado un conjunto A en el que se ha definido una relación binaria  , siendo   un conjunto totalmente ordenado.

El elemento y de A es máximo si se cumple que:

 

Se denomina máximo y define una cota superior en A; el elemento máximo es único. Si el conjunto A y la relación binaria  , que expresaremos   es un orden total y tiene máximo, entonces es un conjunto con orden total y acotado superiormente.

Del mismo modo el elemento z de A que cumple:

 

Se denomina mínimo y define una cota inferior en A; el elemento mínimo es único. Si el conjunto A y la relación binaria  , que expresaremos   es un orden total y tiene mínimo, entonces es un conjunto con orden total y acotado inferiormente.

Un conjunto con orden total solo se dice acotado, si está acotado superior e inferiormente.

Véase también

editar
Relación matemática
Relación binaria
Conjunto preordenado
Conjunto parcialmente ordenado
Orden total
Acotado

Referencias

editar
  1. Barrantes, Hugo. «1». Introducción a las Matemáticas (1 edición). EUNED. p. 42. ISBN 978-99-6831-173-1. 
  2. Aledo Sánchez, Juan Ángel; Penabad, Jaime; Valverde Fajardo, José Carlos; Villaverde Tomé, José Javier (2009). «1.3». Álgebra y Matemática Discreta (1 edición). Ediciones de la Universidad de Castilla La Mancha. p. 23. ISBN 978-87-8427-717-0 |isbn= incorrecto (ayuda). 

Bibliografía

editar
  1. Pérez Lluberes, Kreemly; López Ferreira, María Altagracia (1984). Algebra superior (1 edición). INTEC. ISBN 978-84-8952-514-6. 
  2. Ralph P. Grimaldi (1998). Matemáticas discreta y combinatoria (3 edición). S.A. ALHAMBRA MEXICANA. ISBN 978-96-8444-324-2. 
  3. Restrepo, Guillermo (2003). Fundamentos de las matemáticas (1 edición). Universidad del Valle. ISBN 958-670-215-4. 

Enlaces externos

editar
Apuntes de Matem ́ática Discreta. Francisco José González Gutiérrez. Universidad de Cádiz
Apuntes de Teoría de Conjuntos. Enrique Arrondo. Universidad Complutense de Madrid
Apuntes de Análisis Matemático I. María D. Acosta. Camilo Aparicio. Antonio Moreno. Armando R. Villena. Universidad de Granada
Análisis de una variable real I. Tijani Pakhrou
Relaciones de orden. Universidad de Almería
Axiomática de los números reales. Universidad de Cantabria