Abrir menú principal

Relación de equivalencia

relación reflexiva, simétrica y transitiva
(Redirigido desde «Clase de equivalencia»)
Relación homogéneaRelación reflexivaRelación no reflexivaConjunto preordenadoRelación de dependenciaConjunto parcialmente ordenadoRelación de equivalenciaOrden totalAcotadoOrden total acotadoRelación binaria es 11.svg
Acerca de esta imagen


En teoría de conjuntos y álgebra la noción de relación de equivalencia sobre un conjunto, permite establecer una relación entre los elementos del conjunto que comparten cierta característica o propiedad. Esto permite reagrupar dichos elementos en clases de equivalencia, es decir, «paquetes» de elementos similares. Esto posibilita la construcción de nuevos conjuntos «añadiendo» todos los elementos de una misma clase como un solo elemento que los representará y que define la noción de conjunto cociente.

DefiniciónEditar

Sea   un conjunto dado no vacío y   una relación binaria definida sobre  . Se dice que   es una relación de equivalencia si cumple las siguientes propiedades:

  • Reflexividad: Todo elemento de   está relacionado consigo mismo. Es decir,
 .
  • Simetría: Si un elemento de   está relacionado con otro, entonces ese otro elemento también se relaciona con el primero. Es decir,
 .
  • Transitividad: Si un elemento de   está relacionado con otro, y ese otro a su vez se relaciona con un tercero, entonces el primero estará relacionado también con este último. Es decir,
 .

Notación:

En aritmética modular la relación de equivalencia entre dos elementos   e   se denota   que se lee «   es equivalente a   módulo   ».
Una relación de equivalencia   sobre un cuerpo   puede denotarse con el par  .

Clase de equivalencia o Relación de equivalenciaEditar

En lógica de clases y análisis matemático, la relación de equivalencia   define subconjuntos disjuntos en   llamados clases de equivalencia:

Dado un elemento  , el conjunto dado por todos los elementos relacionados con   definen la clase:

 

se le llama la clase de equivalencia asociada al elemento  .

Al elemento   se le llama representante de la clase.

Se llama orden al número de clases que genera una relación de equivalencia; si éste es finito, se dice que la relación es de orden finito.

El concepto de clase de equivalencia tiene importancia en ciencia, dado un conjunto de objetos o entidades abstractas (potencialmente infinitas), pueden establecerse relaciones de equivalencia sobre la base de algún criterio, las clases resultantes son los "tipos" en los que se puede clasificar toda la gama de objetos.

Conjunto cocienteEditar

Al conjunto de todas las clases de equivalencia se denomina conjunto cociente y se denota como:

  o  

ParticiónEditar

Una relación de equivalencia sobre un conjunto induce una partición del mismo, es decir, un conjunto en el que se ha definido una relación de equivalencia puede ser dividido en varios subconjuntos de elementos equivalentes entre sí y tales que la reunión de esos subconjuntos coincide con el conjunto entero. El siguiente teorema expresa en términos más formales esa misma idea:

Proposición: Una relación de equivalencia en el conjunto no vacío K determina una partición de este, y toda partición de K determina una relación de equivalencia en este.
Demostración
Dada una relación de equivalencia   en K:
Para ver que la intersección es vacía, supongamos que no lo es, es decir, dados [a] y [b] dos clases distintas y   entonces se tiene:
Por simetría  
Por transitividad   y  
Por tanto [a]=[b] que es una contradicción, por tanto, dos clases distintas no tienen elementos en común, así como todo elemento de K pertenece a una clase, queda bien definida una partición.

Dada una partición de K,  , podemos definir la siguiente clase de equivalencia:

Dados dos elementos a y b de K están relacionados si pertenecen al mismo conjunto  

La partición tiene como elementos las clases de equivalencia. Estas son disjuntas dos a dos y la unión de ellas es igual al conjunto K.

  • para cualquiera dos   no relacionados tenemos:  ;
  • la unión de todos integra al total:  

EjemplosEditar

  • Sea N= {0,1,2, 3...}. Se define una relación de equivalencia en NxN, como sigue: (a;b)~ (c;d) si y sólo si a+d = b +c. Esta es una relación de equivalencia en NxN y cada clase de equivalencia es un número entero. [(2;0)]= { (x;y)/ 2+y = 0 + x } a (2;0) se llama representante canónico y se denota, simplificadamente, 2.
  • La relación de congruencia módulo M en el conjunto de los números enteros (i. e.  ), donde se define:   si y sólo si   es múltiplo de M.
Esta relación es de equivalencia porque:
  • Es reflexiva: a - a = 0, que es múltiplo de M.
  • Es simétrica: si a - b es múltiplo de M, entonces b - a = -(a - b) también es múltiplo de M.
  • Es transitiva: sean k y l números enteros tales que a - b = M k y b - c = M l. Entonces, a - c = (a - b) + (b - c) = M k + M l = M(k + l) y por tanto un múltiplo de M. En particular, si M = 2 tenemos la tradicional clasificación de los números enteros en pares e impares.
  • Sea H un subgrupo de un grupo G. Definiendo para elementos del grupo   si y sólo si  , tendremos la relación de equivalencia llamada congruencia módulo H .
  • Definiendo, para elementos del grupo,   si y sólo si existe g en G tal que  , se llama relación de conjugación. Sus clases: clases de conjugación. Las clases de equivalencia reciben el nombre de órbita o clase de conjugación.
  • Sean los números reales a y b, diremos que   s.s.s. sus máximos enteros son iguales. La clase de equivalencia son los intervalos [n; n+1) donde n es un número entero. Así 3,56 y 3,875 son equivalentes pues tienen el mismo máximo entero = 3.

Véase tambiénEditar

ReferenciasEditar

Weisstein, Eric W. «Relación de equivalencia». Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 

  • James R.Munkres,Topología, (2002),Prentice Hall.