Poliedro

cuerpo geométrico cuyas caras son planas y encierran un volumen finito
(Redirigido desde «Poliedros»)

Un poliedro es, en el sentido dado por la geometría clásica al término, un cuerpo geométrico cuyas caras son planas y encierran un volumen finito. La palabra poliedro viene del griego antiguo πολύεδρον (polyedron), de la raíz πολύς (polys), «muchas» y de ἕδρα (hedra), «base», «asiento», «cara».

Los poliedros se conciben como cuerpos tridimensionales, pero hay semejantes topológicos del concepto en cualquier dimensión. Así, el punto o vértice es el semejante topológico del poliedro en cero dimensiones, una arista o segmento lo es en 1 dimensión, el polígono para 2 dimensiones; y el polícoro es el de cuatro dimensiones. Todas estas formas son conocidas como politopos, por lo que podemos definir un poliedro como un politopo tridimensional.

Poliedros en un display en el museo Universum en la Ciudad de México

DefiniciónEditar

Existen varias definiciones de lo que es un poliedro, dependiendo de si se interpreta un poliedro como un volumen, como los polígonos que lo delimitan, o como únicamente los segmentos que conforman el esqueleto del poliedro. Normalmente, un poliedro se define como una región acotada del espacio, delimitada completamente por polígonos planos no necesariamente simples.

El concepto de poliedro puede extenderse de manera que incluya otras clases de cuerpos, como teselaciones, apeiroedros, entre otros.

Denominación de los poliedrosEditar

El nombre dado a un poliedro depende de las propiedades del poliedro que sean relevantes en el contexto en que se esté mencionando.

Normalmente el nombre incluye:

  • alguna cualidad acerca de las caras del poliedro, ya sea la cantidad (tetraedro (4), pentaedro (5), etc.), su forma (deltaedro (triangular), romboedro (rómbica), etc.), entre otras cualidades
  • propiedades que posea el poliedro (regular, toroidal, rómbico, etc.)
  • transformaciones que han sido hechas en el poliedro (truncado, romo, estrellado, etc.)

Criterios de clasificación de los poliedrosEditar

Los poliedros pueden clasificarse según varios criterios:

Estos en conjunto definen algunas de las principales familias de poliedros:

Convexos De caras regulares Isoedrales Isotoxales Isogonales Familia[1]
Si Si No No No Sólidos de Johnson
No nec.[2] Si No Si Si Poliedros cuasirregulares
No nec. Si No nec. No nec. Si Poliedros uniformes
No nec. No nec. Si No nec. Si Poliedros nobles
No nec. Si Si Si Si Poliedros regulares
No Si Si Si Si Sólidos de Kepler-Poinsot
Si Si Si Si Si Sólidos platónicos

Clasificación según el número de carasEditar

El nombre que se le asigna a un poliedro según su número de caras se compone de un prefijo numeral más el sufijo ‑edro. La siguiente lista muestra varios ejemplos:

Nombre Número de caras
henaedro o monoedro 1
diedro 2
triedro 3
tetraedro 4
pentaedro 5
hexaedro 6
heptaedro 7
octaedro u octoedro 8
eneaedro o nonaedro 9
decaedro 10
endecaedro o undecaedro 11
dodecaedro 12
tridecaedro 13
tetradecaedro 14
pentadecaedro 15
hexadecaedro 16
heptadecaedro 17
octadecaedro u octodecaedro 18
eneadecaedro o nonadecaedro 19
icosaedro o isodecaedro 20
triacontaedro o tricontaedro 30
tetracontaedro 40
pentacontaedro o pentecontaedro 50
hectaedro o hecatontaedro 100
chiliaedro 1.000
miriaedro 10.000
decamiriaedro 100.000
hectamiriaedro o megaedro 1.000.000
gigaedro 1.000.000.000
quettaedro 1030
googoledro 10100
apeiroedro infinitos
n-edro[a] n
  1. n puede ser cualquier cantidad escrita por su nombre o en dígitos, o puede dejarse como variable para generalizar a cualquier cantidad de caras.

Reglas de nombramientoEditar

El prefijo numeral que forma parte de estos nombres se puede dividir en otros prefijos más específicos, los cuales describen cada dígito del número de caras del poliedro, y en el mismo orden en que aparecen (excepto cuando hay un 1 en la posición de las decenas; caso en el que se intercambia de lugar el prefijo de las decenas con el de las unidades).

Los prefijos que describen cada dígito pueden a su vez estar compuestos por otros dos prefijos, donde el primero indica cuál es el dígito que describe (es decir, si es 1, 2, etc.) y el segundo cuál es la posición del dígito (decenas, centenas, etc.), aunque en algunos casos el dígito es descrito con solo un prefijo de estos:

  • Las unidades se describen solamente con un prefijo de dígito
  • Cuando el dígito es un 1 se describe únicamente con su prefijo de posición correspondiente
  • icosa- puede colocarse en lugar de isodeca-

La siguiente tabla muestra los distintos prefijos de dígito y de posición. Dependiendo de la posición del dígito correspondiente, los prefijos que se usan varían.

Prefijo de dígito Prefijo de posición
Dígito Posición del dígito correspondiente Posición Prefijo
Cualquiera Unidades Decenas Centenas
1 en-, hena-, mono- o un-[a] 10 conta- o deca-[b]
2 di-[c] do-[d] iso- dia-[e] 100 cosi-, hecatonta- o hecta-[f]
3 tri- tria- tria-[g] 1.000 chilia-
4 tetra- 10.000 miria-
5 penta- pente- 100.000 decamiria-
6 hexa- hexe- 1.000.000 hectamiria- o mega-
7 hepta- 10.000.000 decamega-
8 octa- octo- 100.000.000 hectamega-
9 enea- o nona- ...[h]
  1. mono- solo se usa si el dígito de las decenas corresponde a 0, y en- o un- solo se usan si el dígito de las decenas es 1
  2. deca- solo se usa si el dígito de las decenas es 1 o 2, y solo en caso contrario se usa conta-
  3. di- no se usa en las unidades si el dígito de las decenas es 1 y no se usa en las decenas si el nombre contiene el prefijo deca-
  4. do- solo se usa si el dígito de las decenas es 1
  5. Solo se usa dia- en las centenas si el nombre contiene el prefijo cosi-
  6. hecatonta- solo se usa si el dígito correspondiente es 1. Solo de lo contario se usa cosi-.
  7. Solo se usa tria- en las centenas si el nombre contiene el prefijo cosi-
  8. A partir del megaedro se utiliza el prefijo del SI correspondiente a la potencia de 1.000 menor más cercana a la posición del dígito, más uno de los prefijos, deca- o hecta-, si es que el dígito está una o dos posiciones más hacia la izquierda, respectivamente, que la potencia de 1.000 correspondiente al prefijo del SI.

Familias de poliedrosEditar

Poliedros regularesEditar

Un poliedro regular es isoedral, isotoxal, isogonal, y todas sus caras son regulares. En total existen cinco poliedros regulares convexos, que corresponden a los sólidos platónicos; más 4 no convexos, que corresponden a los sólidos de Kepler-Poinsot y son estelaciones de sólidos platónicos; sumando 9 en total.

Sólidos platónicosEditar

Los sólidos platónicos o sólidos de Platón son poliedros regulares y convexos. Solo existen cinco sólidos platónicos.

Nombre Imagen Símbolo de Schläfli Configuración de vértices
Tetraedro   {3,3} 3.3.3
Cubo o hexaedro regular   {4,3} 4.4.4
Octaedro   {3,4} 3.3.3.3
Dodecaedro   {5,3} 5.5.5
Icosaedro   {3,5} 3.3.3.3.3

Sólidos de Kepler-PoinsotEditar

Los sólidos de Kepler-Poinsot o sólidos de Kepler son poliedros regulares y que, a diferencia de los sólidos platónicos, no son convexos. Solo hay cuatro de ellos y se obtienen como estelaciones del dodecaedro o del icosaedro.

Nombre Imagen Símbolo de Schläfli Configuración de vértices
Gran dodecaedro   {5,52} (55)/2
Pequeño dodecaedro estrellado   {52,5} (52)5
Gran icosaedro   {3,52} (35)/2
Gran dodecaedro estrellado   {52,3} (52)3

Poliedros irregularesEditar

Se dice que un poliedro es irregular si tiene desigualdades entre sus caras, aristas o vértices.

Sólidos arquimedianosEditar

Los sólidos arquimedianos o sólidos de Arquímedes son poliedros convexos y uniformes, pero no transitivos de caras. La familia infinita de los poliedros prismáticos no se considera como parte de los sólidos arquimedianos. Fueron ampliamente estudiados por Arquímedes. Algunos se obtienen truncando los sólidos platónicos. Solo hay trece sólidos arquimedianos.

Nombre Imagen Configuración de vértices
Tetraedro truncado   3.6.6
Cuboctaedro   3.4.3.4
Cubo truncado   3.8.8
Octaedro truncado   4.6.6
Rombicuboctaedro   3.4.4.4
Cuboctaedro truncado   4.6.8
Cubo romo   3.3.3.3.4
Icosidodecaedro   3.5.3.5
Dodecaedro truncado   3.10.10
Icosaedro truncado   5.6.6
Rombicosidodecaedro   3.4.5.4
Icosidodecaedro truncado   4.6.10
Dodecaedro romo   3.3.3.3.5

Prismas y antiprismasEditar

El resto de poliedros convexos y uniformes consiste de prismas y antiprismas, los cuales en conjunto llevan el nombre de poliedros prismáticos. Estos fueron estudiados por Kepler, quien los clasificó. Las familias de los prismas y antiprismas son ambas infinitas.

Todos los prismas uniformes se construyen con dos caras paralelas llamadas bases, directrices o caras directrices, y una serie de cuadrados, tantos como lados tenga la cara directriz. Por ejemplo, el prisma cuyas caras directrices son triangulares se llama prisma triangular y se compone de dos triángulos y tres cuadrados; tiene seis vértices de orden 3 donde convergen siempre dos cuadrados y un triángulo.

Los antiprismas también contienen dos directrices, pero en este caso van unidas por triángulos isósceles, donde la base de cada triángulo va unida a una arista de una de las bases del antiprisma, y el vértice del mismo triángulo va unido a un vértice de la otra base.

Sólidos de JohnsonEditar

Los sólidos de Johnson son un grupo extenso que contiene al resto de los poliedros convexos de caras regulares. Solo uno de ellos tiene la misma configuración en todos sus vértices (pero no es transitivo de vértices) y fueron clasificados y ampliamente estudiados por Norman Johnson. Los sólidos de Johnson son en total 92.

Poliedros estrellados uniformesEditar

Los poliedros estrellados uniformes son una familia de poliedros no convexos, isogonales y de caras regulares. Contiene dos familias infinitas, los prismas estrellados y los antiprismas estrellados, más otros 57 poliedros, 4 de los cuales son los sólidos de Kepler-Poinsot.

Otras familias de poliedrosEditar

Sólidos de CatalanEditar

Corresponden a los duales de los sólidos de Arquímedes (el dual es básicamente el reemplazo de las caras por vértices y viceversa, de manera que las uniones entre los vértices del dual coincidan con las uniones entre las caras del poliedro original). Por ejemplo, el dual del icosaedro (20 caras y 12 vértices) es el dodecaedro (12 caras y 20 vértices), y viceversa. Los sólidos de Catalan son isoedrales pero no de caras regulares.

Nombre Imagen
Tetraedro triakis  
Dodecaedro rómbico  
Triaquisoctaedro  
Tetraquishexaedro  
Icositetraedro deltoidal  
Disdiaquisdodecaedro  
Icositetraedro pentagonal  
Triacontaedro rómbico  
Triaquisicosaedro  
Pentaquisdodecaedro  
Hexecontaedro deltoidal  
Disdiaquistriacontaedro  
Hexecontaedro pentagonal  

DeltaedrosEditar

Se llama deltaedros a los cuerpos que solo están formados por triángulos equiláteros. Solo hay ocho deltaedros convexos. Del grupo de los sólidos platónicos se encuentran el tetraedro, el octaedro y el icosaedro; y del grupo de los sólidos de Johnson están la bipirámide triangular, la bipirámide pentagonal, la bipirámide cuadrada giroelongada, el biesfenoide romo y el prisma triangular triaumentado.

Nombre Imagen
Tetraedro  
Octaedro  
Icosaedro  
Bipirámide triangular  
Bipirámide pentagonal  
Biesfenoide romo  
Prisma triangular triaumentado  
Bipirámide cuadrada giroelongada  

TrapezoedrosEditar

Los trapezoedros son los duales de los antiprismas.

Generalizaciones de poliedrosEditar

ApeiroedrosEditar

Se puede incluir como poliedros a aquellos que tienen una cantidad infinita de caras, llamados apeiroedros, entre los que destacan algunas familias:

Poliedros en el espacio no euclidianoEditar

También se puede extender el concepto de poliedro hacia espacios no euclidianos:

  • Un poliedro esférico es una teselación en la superficie de la esfera, donde las aristas corresponden a geodésicas
  • También es posible teselar el plano hiperbólico

Referencias y notasEditar

  1. La familia contiene a todos y únicamente los poliedros que cumplen con las propiedades señaladas
  2. No necesariamente. Esto significa que existen casos en que se da la propiedad y casos en que no.

Véase tambiénEditar

BibliografíaEditar

  • Quince Salas, Ricardo. Propiedades elementales de los poliedros regulares. Santander: [s.n.], 1974. 17 p. Comunicación presentada a las Reuniones sobre Geometría aplicada a la Arquitectura y a la Ingeniería Civil.
  • Quince Salas, Ricardo. Áreas y volúmenes de cuerpos geométricos. Teoría y ejercicios. Santander: Escuela Superior de Ingenieros de Caminos, Canales y Puertos, [s.a.]. 202 p.
  • Quince Salas, Ricardo. Áreas y volúmenes de cuerpos geométricos. Tomo 2: soluciones. Santander: Escuela Superior de Ingenieros de Caminos, Canales y Puertos, [s.a.]. 124 p.

Enlaces externosEditar

En españolEditar

En otros idiomasEditar

Teoría generalEditar

Listas y bases de datos de poliedrosEditar

Software libreEditar

  • A Plethora of Polyhedra (en inglés) – Una colección interactiva y gratuita de poliedros en Java. Incluye redes, secciones planares, duales, truncamientos y estrellamientos de más de 300 poliedros.
  • Hyperspace Star Polytope Slicer (en inglés) – Una applet en java para Explorer, incluye una variedad de opciones de visores 3d.
  • openSCAD – Programa libre en multiplataforma para programadores. Los poliedros son unas de las formas que se pueden modelas con ellos. Hay un manual (OpenSCAD User Manual).
  • OpenVolumeMesh (en inglés) – Una biblioteca en C++ en multiplataforma para manejar redes poliédricas. Desarrollado por el Aachen Computer Graphics Group, RWTH Aachen University.
  • Polyhedronisme – Una utilidad basada en web para generar modelos de poliedros que usa la Conway polyhedron notation. Los modelos se pueden exportar como imagen en 2D, o como 3D OBJ o ficheros VRML2. Los ficheros en 3D se pueden abrir con software CAD.

Recursos para hacer modelos físicosEditar