Seno (trigonometría)

función trigonométrica

En matemática, el seno es una de las seis funciones trigonométricas, llamadas también funciones circulares;[1]​ es una función real e impar cuyo dominio es (el conjunto de los números reales) y cuyo codominio es el intervalo cerrado :

Seno

Gráfica de Seno
Definición sen (x)
Dominio
Imagen [-1,1]
Cálculo infinitesimal
Derivada cos x
Función primitiva -cos x + c
Función inversa arcsen x

se denota para todo . El nombre se abrevia a veces como sen en la forma española y sin en las formas latina e inglesa.[2][3][4]

Etimología editar

El astrónomo y matemático indio Aria Bhatta (476–550 d. C.) estudió el concepto de «seno» con el nombre sánscrito de ardhá-jya,[5]​ siendo अर्ध ardha: «mitad, medio», y ज्या jya: «cuerda»). Cuando los escritores árabes tradujeron estas obras científicas al árabe, se referían a este término como جِيبَ jiba . Sin embargo, en el árabe escrito se omiten las vocales, por lo que el término quedó abreviado jb. Escritores posteriores que no sabían el origen extranjero de la palabra creyeron que jb era la abreviatura de jiab (que quiere decir «bahía», «cavidad» o «seno»).

A finales del siglo XII, el traductor italiano Gerardo de Cremona (1114-1187) tradujo estos escritos del árabe al latín reemplazando el insensato jiab por su contraparte latina sinus (‘hueco, cavidad, bahía, seno’). Luego, ese sinus se convirtió en el español «seno».[6]

Según otra explicación,[cita requerida] la cuerda de un círculo se denomina en latín inscripta corda o simplemente inscripta. La mitad de dicha cuerda se llama semis inscriptae. Su abreviatura era s. ins., que terminó simplificada como sins. Para asemejarla a una palabra conocida del latín se la denominó sinus.

Definición editar

 
El seno de α es la razón  

En trigonometría, el seno de un ángulo   de un triángulo rectángulo se define como la razón entre el cateto opuesto a dicho ángulo y la hipotenusa:

 

Esta razón no depende del tamaño del triángulo rectángulo escogido sino que es una función dependiente del ángulo  

Si   pertenece a la circunferencia goniométrica, es decir, la circunferencia de radio uno con   se tiene:

 

Ya que  .

Esta construcción permite representar el valor del seno para ángulos agudos (no obtusos) y funciona exactamente igual para los vectores, representando un vector   mediante su descomposición en los vectores ortogonales   y  .

Relaciones trigonométricas editar

El seno puede relacionarse con otras funciones trigonométricas mediante el uso de identidades trigonométricas.

El seno es una función impar, es decir:

 

El seno es una función periódica de periodo  ,

 
Por inducción ya que aplicando un número par de veces   se llega a todos los valores de k.

En función del coseno editar

La curva del coseno es la curva del seno desplazada   a la izquierda dando lugar a la siguiente expresión:

 

Además, como la función coseno comparte la misma periodicidad  , es posible generalizar a:

 

Como  , despejando   se obtiene:

 

En función de la tangente editar

 

Podemos agregar que  , y continuando  , despejando y reemplazando   se obtiene:

 

En función de la cotangente editar

Sabiendo que  , y que  , entonces:

 

En función de la secante editar

 

Como  , despejando y reemplazando   se obtiene:

 

En función de la cosecante editar

El seno y la cosecante son inversos multiplicativos:

  [7]

Seno de la suma de dos ángulos editar

 

 

La demostración está en la sección de identidades trigonométricas.

Seno del ángulo doble editar

 
Como:
 

Bastará con el cambio  

Seno del ángulo mitad editar

 
Usando las fórmulas:
  y
 

resulta:

 
 
Representación de  

y aislando  :

 

El cambio   corrige el ángulo y se extrae el valor absoluto con signo del seno:

   

donde  .

Suma de senos como producto editar

 

 

Usando seno de la suma de dos ángulos y con el cambio   se tiene:
 
 

Luego sumando o restando según convenga salen ambas ecuaciones.

Producto de senos como suma editar

 
Usando las ecuaciones de coseno de la suma de dos ángulos y restando resulta la primera ecuación, y si a éstas ecuaciones se le aplica la identidad de coseno del ángulo doble resulta la segunda ecuación.

Potencias de senos editar

  •  
  •  

Análisis matemático editar

Definición editar

La función seno puede definirse mediante un sistema de dos ecuaciones diferenciales ordinarias:

 
 

si la condición inicial es (0,1) entonces su solución es   e  .

Derivada editar

 
  • Observación:  .

Como serie de Taylor editar

El seno como Serie de Taylor´s version en torno a a = 0 es:

 

Propiedades editar

  • Es una función continua en todo su dominio de definición.
  • Es una función trascendente pues no se puede expresar mediante una función algebraica, sea entera, racional o irracional.
  • El seno es una función analítica, esto es, que tiene derivada continua de cualquier orden.
  • Tiene una infinidad contable de ceros, donde corta al eje X.
  • Tiene una infinidad contable de valor máximo = 1; igual cantidad contable de valor mínimo = -1.
  • Tienen infinidad contable de puntos de inflexión.
  • Su gráfica es cóncava (hacia abajo) en  
  • Su gráfica es convexa (hacia arriba) en   [8]

Análisis complejo editar

En el plano complejo a través de la fórmula de Euler se tiene que:

 
Dada la fórmula de Euler:
 

donde   es la base del logaritmo natural, e   es la unidad de los números imaginarios.

Mediante las identidades del senos y cosenos aplicado a   se tiene también que:

   

Restando la segunda ecuación a la primera se tiene:

  [9]

de donde despejando el seno se obtiene lo que se quiere.

En programación editar

Gran parte de los lenguajes de programación tienen la función seno en sus librerías.

La mayoría de los modelos de calculadoras están configurados y aceptan el valor de un ángulo cualquiera en los tres sistemas estándares de referencia angular: grados sexagesimales, grados centesimales y radianes.

Ejemplos:

Seno de 45 grados = 0,7071
Seno de 45 radianes = 0,8509.

Obsérvese que la diferencia entre ambos valores resultantes podría pasar desapercibida. Es necesario, entonces, pasar los grados a radianes o viceversa. Nótese que el símbolo π es el número Pi. Ejemplo de conversiones:

Rad = Deg * π/180
Deg = Rad * 180/π.

La comprobación del modo en curso de una calculadora se hace con valores conocidos:   y 90°:

  en caso del modo de radianes activo.
  en caso del modo de grados sexagesimales activo.

Representación gráfica editar

 

Véase también editar

Referencias editar

  1. A. I. Markushévich: Curvas maravillosas/ Números complejos y representaciones conformee/ Funciones maravillosas Editorial Mir, Moscú, 1988, pp 99-100
  2. Real Academia de Ciencias Exactas, Físicas y Naturales. Diccionario esencial de las ciencias. ISBN 84-239-7921-0. «Sen->Abreviatura de seno. Seno->...Abreviado sen. Sin->()Elemento compositivo que significa "con","a la vez". » 
  3. A. Bouvier y M. George. Diccionario de Matemáticas. AKAL. ISBN 84-7339-706-1. «Sen->Abreviación de seno. Seno->...Representado por Sen. » 
  4. Equipo editorial (2001). Enciclopedia didáctica de matemáticas. OCEANO. ISBN 84-494-0696-X. «Seno-> ... sen â ... » 
  5. En el sitio Centros5.Pntic.Mec.es se refieren erróneamente a yia como yivá, que no significa «cuerda» sino «ser vivo».
  6. Howard Eves (1990). An Introduction to the History of Mathematics (6th Edition, p.237). Saunders College Publishing House, New York. 
  7. I. Bronshtein & K. Semendiaev: Manual de matemáticas, Editorial Mir, Moscú/ 1973, pág. 210
  8. Bronshtein. Op. ci pág, pág. 275
  9. A. Markushevich: Teoría de las funciones analíticas' tomo I editorial Mir Moscú (1970)

Enlaces externos editar