Abrir menú principal

Función continuamente diferenciable

Gráfico de una función continuamente diferenciable.

En análisis matemático, una clase diferenciable es una clasificación de una función de acuerdo a las propiedades de sus derivadas. Clases diferenciales de orden superior corresponden a la existencia de más derivadas. Funciones que tienen derivadas de todos los órdenes son llamadas infinitamente continuas, es decir que tiene derivadas parciales continuas de cualquier orden finito.

  • Una función es de clase C1 si sus derivadas parciales son continuas. Estas funciones se denominan diferenciables continuas.
  • Una función es de clase Cn, con n ≥ 1 y constante, si sus derivadas parciales de orden n son continuas. Estas funciones se denominan diferenciables finitas .
  • Una función es denominada continuamente diferenciable si es de clase Cn para todo n, o lo que es lo mismo, es de clase C.

Por ejemplo, las funciones exponenciales son evidentemente funciones continuamente diferenciable porque sus derivadas son siempre continuas.

Índice

Clase diferenciableEditar

Considere un conjunto abierto en la recta real y una función   definida en ese conjunto con valores reales. Sea   un entero no negativo. La función es de clase   si sus derivadas   existen y son continuas (la continuidad es automática para todas excepto para la última,  ). La función   se dice que es de clase  , o función suave, si existen todas las derivadas de todos los órdenes. Por último,   es de clase  , o analítica , si   es continuamente diferenciable y es igual a la serie de Taylor expandida alrededor de un punto en su dominio.

Construcción de funciones según especificacionesEditar

Usualmente es útil construir funciones continuamente diferenciables que toman el valor cero fuera de un intervalo dado, pero no dentro de él. Esto es posible; por otra parte es imposible que una serie de potencias pueda tener esa propiedad. Esto prueba que existe un gran salto entre funciones continuamente diferenciables y funciones analíticas; y que en general las funciones continuamente diferenciables no son necesariamente iguales a sus series de Taylor.

Para dar una construcción explícita de dichas funciones, podemos comenzar con la siguiente función

 

No sólo se tiene que

 

sino que también se tiene

 

para cualquier polinomio  ; ya que el crecimiento exponencial con exponente negativo domina. Se sigue que todas las derivadas de f(x) en cero, son iguales a cero:

 

lo cual significa que fijando f(x) = 0 para x ≤ 0 genera una función continuamente diferenciable. Combinaciones tales como f(x)f(1-x) pueden ser hechas con cualquier intervalo requerido como soporte; en este caso el intervalo [0,1]. Este tipo de funciones tienen un comportamiento extremadamente lento cerca de 0.

Espacio topológico de las funciones Ck y CEditar

En un dominio acotado D en un espacio euclídeo, el conjunto de funciones Ck conforman un espacio de Banach con la norma

 

sin embargo, el conjunto de las funciones continuamente diferenciables   es únicamente un espacio de Fréchet.

Relación con la teoría analítica de funcionesEditar

Pensando en términos de análisis complejo, una función como puede ser

 

es continuamente diferenciable para valores reales de z , pero tiene una singularidad en z = 0. Esto es, el comportamiento cerca de z = 0 es malo; pero sucede que uno no puede verlo generalmente, ya que se suele trabajar con números reales.

Particiones de la unidad en funciones continuamente diferenciablesEditar

Las funciones continuamente diferenciables con un soporte cerrado dado, son usadas en la construcción de particiones de la unidad diferenciables (ver partición de la unidad); éstas son esenciales en el estudio de variedades diferenciables, por ejemplo, muestran que la variedad de Riemann puede ser definida globalmente empezando por la existencia local de ésta. Un caso simple es el de una función bump en la recta real, esto es, una función continuamente diferenciable f que toma el valor 0 fuera del intervalo [a,b] y que cumple que:

f(x) > 0 for a < x < b.

Dado un número de intervalos solapados en la recta real, las funciones bump pueden ser construidas en cada uno de ellos, y en los semi-intervalos (-∞, c] y [d,+∞) para cubrir la recta entera, tal que la suma de las funciones sea siempre 1.

Como acaba de decirse, particiones de la unidad no son aplicables a funciones holomorfas; su comportamiento diferente y la continuación analítica es una de las raíces de la teoría de haces. En cambio, los haces de funciones continuamente diferenciables tienden a no dar mucha información topológica.

Véase tambiénEditar

ReferenciasEditar